| YEAR DIPLOMA
CINEERING AND TECHNOLOGY
??MPUTER ENGINEERING GROUP

SEMESTER-V]

PYTHON'

VIJAY T. PATIL
Dr. MEENAKSHI A. THALOR
Mrs. JYOTI MANTE (KHURPADE)

Scanned with CamScanner

Contents ...

1.0 Introduction |
1.1 Features of Python

1.1.1 Running Python Scripts
1.1.2 Internal Working of Python
Python Building Blocks

1.2.1 Character Set

1.2.2 Identifiers

1.2.3 Keywords

1.24 V, :
1.25

126 Ir on
1.27 Commen
1.3 Python Envi
1.4 Running

Scanned with CamScanner

or and while Loops
a/Loop Control Statements

243 Nested!
25 Loop Manipulatio
251 break Statement
252 continué Statement
253 pass Statement

s Practice Questions
R

3. Data Structures in Python e
3.0 Introduction
3.1 Lists
311 Creating a List
312 Accessing Values in List
313 Deleting Values in List
3.1.4 Updating Lists (Change or Add Elements to a List)
315 Basic List Operations (Indexing and Slicing)
3.1.5.1 Indexing
3.1.5.2 List Slicing
516 Built-in Functions and Methods for List

32 Tuples

3.2.1 Creating Tuple

3.2.2 Accessing Values in Tuple

3.2.3 Deleting Tuples

3.2.4 Updating Tuple

3.2.5 Tuple Operations

3.2.6 Build-in Functions and Methods of Tuple
33 Sets

3.3.1 Acceesing Values in Sets

3.3.2 Deleting Values in Set

3.3.3 Updating Set

3.3.4 Basic Set Operations

3.3.5 Built-in Functions and Methods for Set
3.4 Dictionaries

3.4.1 Creating Dictionary

34.2 Accessing Values in a Dictionary

3.4.3 Deleting Elements/ltems from Dictionary

3.4.4 Updating Dictionary

3.4.5 Basic Operations on Directory

3.4.6 Built-in Functions and Methods for Dictionary
* Practice Questions

e

4.0 |ﬂtl’od|gﬁm

4.1 Use of Python Built-In Functions
4.1.1 Type Data Conversion Functions
412 Buitin Mathematical Functions

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Chapter Outcomes...

®| Identify the given variables, keywords and constants in Python.
® Use indentation, comments in the given program.

® Install the given Python IDE and editor.

w Develop the python program to display the given text.

Learning Objectives...

® To understand Basic Concepts in Python Programming

a| To learn Features and Environment for Python Programming

s/ To know Python Programming Building Blocks like Keywords, Variables, Identifiers etc,
®m| To learn Data Types in Python Programming

ET] NTRODUCTION

Python is a high-level, interpreted, interactive and object-oriented programming language. Today,
Python is the trendiest programming language programming.

There are several reasons for why Python programming language is the preferable choice of the
programmers/developers over other popular programming languages like C++, Java and so on.
Python is popular programming language because of it provides more reliability of code, clean
syntax of code, advanced language features, scalability of code, portability of code, support object
oriented programming, broad standard library, easy to learn and read, support GUI mode,
interactive, versatile and interpreted, interfaces to all major commercial databases, and so on.

History of Python Programming Language:

Python laid its foundation in the late 1980s. Python was developed by Guido Van Rossum at National
Research Institute for Mathematics and Computer Science in Netherlands in 1990.
Inspired by Monty Python's Flying Circus, a BBC comedy series, he named the language Python.
Python is derived from many other languages, including ABC, Modula-3, C, C++, Algol-68, SmallTalk,
and Unix shell and other scripting languages.
ABC programming language is said to be the predecessor of Python language which was capable of
Exception Handling and interfacing with Amoeba Operating System. Like Perl, Python source code is
now available under the GNU General Public License (GPL).
In February 1991, Guido Van Rossum published Python 0.9.0 (first release) to alt.sources. In addition
to exception handling, Python included classes, lists and strings.
In 1994, Python 1.0 was released with new features like lambda, map, filter, and reduce which
aligned it heavily in relation to functional programming.

[1.1]

3

Scanned with CamScanner

"®Y FEATURES OF PYTHON ok

- Interpreted Language:

1.2

hon 2.0 added new features like list comprehensions, garbage collectic :
Python £ ‘
UniCOde- lled " Kl) : N 3

python 3.0 (also ca Py3K") was released. It
?1;:1 dDaenii ntal flaw of the language. In Python 3.0 the print statement has

int() function. ;i .
prlt;]o(ri widely used in both industry and academia because of its

support of libraries. : o
python is available for almost all operating systems such as Windows, Mac, Linux

can be downloading from http://www.python.org/downloads. N
Some common applications of Python Programming are listed below:
Google's App Engine web development framework uses Python as an application |
Maya, a powerful integrated 3D modeling and animation system, provides a Pyt
APL
Linux Weekly News, published by using a web application written in Pythor . kY
Google makes extensive use of Python in its Web Search Systems.
The popular YouTube video sharing service is largely written in Python progra
The NSA (National Security Agency) uses Python programming for er
intelligence analysis. '
. iRobot uses Python programming to develop commercial and military robotic devices.
8. The Raspberry Pi single-board computer promotes Python programming as
language. |
9. Nextflix and Yelp have both documented the role of Python in their softwar
10. Industrial Light and Magic, Pixar and others uses Python programming
animated movies.

£
2.

oV oA W

Python's features include:
Easy to Learn and Use:

Python is easy to learn and use. It is developer-friendly and high level p .
Python has few keywords, simple structure, and a clearly defined synwm

understandable for beginners. T
Python language is more expressive means that it is more <*
programmers, g

In Python programming programs are easy to write and execute as it omits
poorly understandable and confusing features of other programming language
Java, 3

Python is an interpreted language i.e., interpreter executes the code line by line
d(fbugging easy and thus suitable for beginners. There are excellent, straig
with python code, is interactive interpreter. -
In python, we need not to learn a build system, IDE, special text editor, or anythin
python. All we need only a command prompt and the interactive editor. e
Python provides a Python Shell (also known as Python Interactive Shell) w
single Python command and get the result as shown below. If python is ir
open the Python Shell on Windows, open the command pron.;pt, write py he

As we can see, a Python Prompt comprising of . A

wil

Scanned with CamScanner

L LR R R B B =1 T e Y e

Programming with 'Python’

1.8 Introduction and Syntax of Python Program

B Command Prompt - python

Fig. 1.1: Python Command Prompt
3. Interactive Mode:

Python programming language has support for interactive mode, which allows interactive testing
and debugging of code. Graphical User Interfaces (GUIs) can be developed using Python.

P)fthon supports GUI applications that can be created and ported to many system calls, libraries and
windows systems, such as Windows MFC, Macintosh and the X Window system of Unix.

There are many free and commercial editors available for Python. Following table lists Python
editors:

| Sr.No. Editor | E Description

1. IDLE * IDLE is a popular Integrated Development Environ-
ment written in Python and it has been integrated with
the default language.

* Mainly used by the beginner level developers who want
to practice on Python development.

2. PyCharm |e PyCharm is one of the widely used Python IDE which
was created by Jet Brains.

* With PyCharm, the developers can write a neat and
maintainable code. It helps to be more productive and
gives smart assistance to the developers.

¢ Ittakes care of the routine tasks by saving time and
thereby increasing profit accordingly.

3, Spyder | Itwas mainly developed for scientists and engineers to
provide a powerful scientific environment for Python.

» It offers an advanced level of edit, debug, and data
exploration feature.

e

» It is very extensible and has a good plugin system and SPYDER
APL
4, PyDev |e PyDev is an outside plugin for Eclipse. It is basically an
IDE that is used for Python development. e

» Itislinear in size, It mainly focuses on the refactoring PYD
of python code, debugging in the graphical pattern, ey
analysis of code etc. It is a strong python inter-preter.

S Jupyter |e The Jupyter Notebook is a browser-based graphical o

L]
Notebook interface to the IPython shell. At
+ Allows us to create and share documents that contain Jupyter
live code, equations, visualizations and narrative text. e’
M)

In this text book, IDLE is used for Python programming. IDLE (Integrated Development and Learning
Environment) is an Integrated Development Environment (IDE) for Python.

To start IDLE interactive shell, search for the IDLE icon in the start menu and double click on it and
we will get the following window (See Fig. 1.2).

Scanned with CamScanner

F 14

with 'Python Ast :
we can execute commandsc
hon IDLE shell not only - oo execution of those filet

o can create .py files and
[P Python 3.73 Shefl

In Pyt
put als

Type "help®,
»> |

Fig. 1.2: Python Shell

Free and Open Source: oh s ol
python programming language is developed under an OSI app
freely available at official web address. The source code is also
The Python software can be freely distributed and any o 1
changes/modifications to it and use the pieces in new free pro
platform Independence/Cross Platform Language/Portable:
Python can run on a wide variety of hardware platforms and has t
Python can run equally on different platforms such as Windows
we can say that Python is a portable language.

Fig. 1.3 shows execution of Python code by interpreter.

=]
=

4
Source code

Y A L - i I.I 'I ‘;.
Fig. 1.3: Execution of Python Code
Python source code goes through Compiler w ompilas e
byte code. gh S et whic eI m’ ¥
Byte code is a lower level, platform ind _ g o

101 ependent, efficient and
source code. As soon as source code get ' byte coc
Ma # gets converted to byte code,
The PVM is the runtime engine of Python; i : - '
: . on; it's a};wayapmtﬂ N

component that truly ru hwe B et C
integelae AL e A

Scanned with CamScanner

o T TRV L AN L == T e g, e m—— m— o 2

Programming with ‘Python’ 1.5 Introduction and Syntax of Python Program

Extensible:

Python programming implies that other languages such as C/C++ can be used to compile the code
and thus it can be used further in the python code.

Python has a large and broad library and provides rich set of module and functions for rapid
application development.

Python languages bulk library is portable and cross platform compatible with Unix, Windows etc.

Limitations of Python:

1. Python is an interpreter based language. Therefore, it is bit slower than compiler based
languages.

2. Python is a high level language like C/C++/]Java, it also uses many layers to communicate with
the operating system and the computer hardware.

3. Graphics intensive applications such as games make the program to run slower.

4. Due to the flexibility of the data types, Python's memory consumption is also high.

structure of a Python Program:

Fig. 1.4 shows a typical program structure of Python programming.

Python programming programs are structured as a sequence of statements. A Python statement is
smallest program unit.

Statements are the instructions that are written in a program to perform a specific task. A Python
statement is a complete instruction executed by the Python interpreter.

By default, the Python interpreter executes all statements sequentially, but we can change order of
execution using control statements.

#Python Program Structure. Calculate Area and Circumference
of circle using class. # Documentation section

import math # import statement
radius=5 # global declaration Section
class Circle(): # class section

def getArea(self):
return math.pi*radius*radius

def getCircumference(self):
return radius*2*math.pi

def showradius(): # sub Program section
print("Radius =",radius)
showradius () # Playground Section
c=Circle()

print(“Area =",c.getArea()) print(“Circumference
=",c.getCircumference())

Output:
Radius = 5
Area = 78.53981633974483
Circumference = 31.41592653589793

Fig. 1.4: Typical Program Structure of Python Programming with Example

Program structure of Python programming contains following sections:

1. Documentation Section includes the comments that specify the purpose of the program.
A comments that is a non-executable statement which is ignored by the compiler while program
execution. Python comments are written anywhere in the program.

2. Import Section is used includes different built in or user defined modules.

Global Declaration Section is used to define the global variables for the programs.

4. Class Section describes the information about the user defined classes in the Python program.
A class is a collection of data members and member functions called method, that operate on
data members.

od

Scanned with CamScanner

[1 1.6 . Sy .
Programming with Python —__Introduction ane

fined functions. The funetinme
b Program Section includes use de %
5. sst‘.:ltemengts that need to be executed when the function is called for m i

6. Pay Ground section is the main section of Python pro e d
the function calling. gram m%iu seau

EX®Y running Python Scripts N
. python has two basic modes namely, normal and interactive, ; |,

The normal script mode is the mode where the scripted and finished DY files are ﬂmﬁ;
interpreter. ' ..T_F

The interactive mode is a command line shell which gives immediate feedback for each s
while running previously fed statements in active memory.

As new lines are fed into the interpreter, the fed program is evaluated both in part and in

Interactive Mode:
Interactive mode is used for quickly and conveniently running single line orblocks of'-‘
example using the python shell that comes with a basic python installation. i34
The ">>>" indicates that the shell is ready to accept interactive commands. For example, if
to print the statement “Interactive Mode”, simply type the appropriate code and hit enter,

File Edit Shell Debug Options Window Help ORI R
Python 3.6.4 (v3.6.4:d4Beceb, Dec 19 2017, 06:04:48) mc v. uon 32 bit (Intel)) #
on win3z '
Type "copyright", "credits”™ or "license ()™ for more informacion.
>»> print|‘'Interaccive Mode')

Inceractive Mode

> I

Script Mode: '

In the standard Python shell we can go to “File” — “New File” (or just hit Ctrl + N) to pull u
script to write the code. Then save the script with a “.py” extension.
We can save it anywhere we want for now, though we may want to make a folder som
the code as we test Python out. To run the script, either select “Run” — “Run Module” o
We should see somethmg hke the follomng, [See Flg 1.6 (a) and 1.6 (b)]

""" — : 4—..1...‘.

pzint('!orm Hode')

e e

¥ ' Fig. 16 (a)
1 .L‘._ll

Scanned with CamScanner

Programming with ‘Python’

L

1.7 Introduction and Symax of Python Program

File Edit Shell Debug Options Window Help

Python 3.6.4 (v3,6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (I ~
ntel)] on win32

:ge "COPYTight®, “oredits® or *license ()" for more information.

== RESTART: Ct\Users\acer\AppData\Local\Programs\Pychon\Pychon36-32\test.p
y =

Script Mode

»> |

el d " i Cotdl
Fig. 1.6 (b)

EI..‘.I..Z__:f Internal Working of Python

Python is an object oriented programming language like C++ and Java. Python is called an
interpreted language means Python programs are executed by the interpreter.

Python uses code modules that are interchangeable instead of a single long list of instructions that
was standard for functional programming languages.

The standard implementation of python Python code | | Syntax error messages
is called “CPython”. It is the default and —E Syniax Checket | o)
widely used implementation of the '

Python.

When a programmer tries to run a
Python code as instructions in an L
interactive manner in a Python shell, Userinputs ' Python Virtual Other error messages
then Python performs various " Machine (PVM) ST
operations internally. :

All such internal operations can be Program

broken down into a series of steps as
shown in Fig. 1.7.

Byte code

Fig. 1.7: Internal Operations

The Python interpreter performs following tasks to execute a Python program:

1. The interpreter reads a Python expression or statement, also called the source code, and verifies
that it is well formed. In this step, as soon as the interpreter encounters such an error, it halts
translation with an error message.

2. If a Python expression is well formed, the interpreter then translates it to an equivalent formina
low-level language called byte code. When the interpreter runs a script, it completely translates
it to byte code.

3, This byte code is next sent to another software component, called the Python Virtual Machine
(PVM), where it is executed. If another error occurs during this step, execution also halts with an

In order to _- n program, we must be aware of its structure, keyworbimd
datatypesalsohawsome'knmhdgoofmmu.idenﬁﬁmandwm
Keywords, identifiers, variables etc., are the basic building blocks of Python programming. Python
uses the character sets as the building block to form the basic program danmm”m
keywords, constants, etc. k

P N

Scanned with CamScanner

’ aracter Set
1.2‘ gll:mctel' set is a set of alphabets, letters, symbols and some special characters that are valig :
The "

ing language.
python programming 18 :
« Python uses the following character sets. These characters are submitted to the Python intepy

they are interpreted or uniquely identified in various contexts, such as characters, iﬂenﬁ-’ ";;:;
nan);es or constants.
1. Lowercase English Letters: a to Z. i
2. Uppercase English Letters: A to Z.
3. Punctuation and Symbols: "$", "!", etc. |
4. Whitespace Characters: An actual space (" "), as well as a newline, carriage return, hopis
tab, vertical tab, and a few others. :
5. Non-Printable Characters: Characters such as backspace, "\b", that cannot be printed utaﬂ'ly'
the way that the letter A can be printed. &
6. Delimiter: Delimiters are symbols that perform a special role in Python like grouping
punctuation and assignment. Following symbols and symbol combination uses as a delimiter |

python:
b) Bedad oo s g atmune e dm ey Vi e g
« A program in Python contains a sequence of instructions. Python breaks each statement int
sequence of lexical components/elements which are identify by the interpreter, known as tokens,
« A token is a smallest unit of the program. Python contains various types of tokens, such as keywords,
variables, operators, literals, identifiers etc. 3

W] Identifiers P
« A Python identifier is a name given to a function, class, variable, module or other objects th‘at'fﬁ-' '
in Python program. b

« Allidentifiers must obey the following rules:
1. An identifier can be a combination of uppercase letters, lowercase letters, underscores an
digits (0-9). Examples include, Name, myClass, Emp_Salary, var_1, _Address
print_hello_world.

2. Wecan use underscores to separate multiple words in the identifier. For example, Emp_Sal

3. An identifier starts with a letter which can be alphabet (either lowercase or uppercase)
underscore ().

4. Identifiers can be of any length.

5. Identifiers cannot start with digit and must not contain any space or tabs. Example includ
2variable, 101D,

6. We cannot use Python keywords as identifiers. ;
7. Special characters such as %, @, and $ are not allowed within identifiers. Example inciué
$Money, @salary. '

Python isa case-sensitive language and this behavior extends to identifiers. Thus, iden tifier A
and age are two distinct identifiers in Python.

ONtal

8.

I g Bnnmmlple of -Val.id ith-:ntiﬁem includes: Circ le__A.rea, EmpName, Student, Sum, Sal ary1e, -w
' ple of invalid identifiers includes: ! count, 4marks, XLoan.

EEXY keyworas
.

Scanned with CamScanner

Programming with ‘Python’

1.9

Introduction and Syntax of Python Program

« Following table lists keywords in Python programming:

and 2% ! assert break class continue
def del else elif except exec
| s finally for from global if
import | in is lambda none not
| = or ‘ pass print raise return true
try ' while with yield

yW¥.} Variables

» Awvariable is like a container that stores values that we can access or change. It is a way of pointing to
a memory location used by a program. We can use variables to instruct the computer to save or
retrieve data to and from this memory location.

+ Awvariable is 2 name given to a location in the computer’s memory location, where the value can be
stored that can be used in the program.

* When we create a variable, some space in the memory is reserved for that variable to store a data
valltf in it. The size of the memory reserved by the variable depends on the type of data it is going to
ho

» The variable is so called because its value may vary during the time of execution, but at a given
instance only one value can be stored in it.

Variable Declaration:

» A variable is an identifier, that holds a value. In programming, we say that we assign a value to a
variable. Technically speaking, a variable is a reference to a computer memory, where the value is
stored.

» Basicrules to declare variables in python programming language:

1. Variables in Python can be created from alphanumeric characters and underscore(_) character.
2. Avariable cannot begin with a number.
3. The variables are case sensitive. Means Amar is differ the 'AMAR' are two separate variables.

Variable names should not be reserved word or keyword.

No special characters are used except underscore () in variable declaration.

. Variables can be of unlimited length.

» Python variables do not have to be explicitly declared to reserve memory space. The variable is

declared automatically when the variable is initialized, i.e., when we assign a value to the variable

first time it is declared with the data type of the value assigned to it.

This means we do not need to declare the variables. This is handled automatically according to the

type of value assigned to the variable. The equal sign (=) i.e., the assignment operator is used to

assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to the right of

the = operator is the literal value or any other variable value that is stored in the variable.

Syntax: variable=value
Example: For variable.
»3> a=1@
>»> a

i@
3>

¢ PﬂMnhnmanausasi@iBSadnghvaMemmemlvaﬁablessimultaneouﬂy.

Example: a=b=c=1
All above three variables are
value 1.

A n s

assigned to same memory location, when integer object is created with

Scanned with CamScanner

Scanned with CamScanner

programming with ‘Python’

2. Numeric Literals:

Numeric literals are immutable. Numeric literals ¢
s can belong to following four different numerical types.

Introduc

tion and Syntax 01 &) ===

dealte

omprise number or digits form0to9.

« Numeric literal

negative (-)) with no
fractional part.
Example: 100

case or uppercase L.
Example: 87032845L

part.
Example: 26.2

int (signed integers) long (long integers) float (floating point) complex (complex)
.._.—————"-'__'_'___'_— » »
| Numbers (can be both | Integers of unlimited | Real numbers with both | In the form of a+bj
positive (+) and | size followed by lower- | integer and fractional | where a forms the real
part and b forms the

imaginary part of
complex number.

Example: 3.14j

R

3. Boolean Literals:

A Boolean literal can have any of the two values namely, True or False.

Example: For Boolean literal.
>>> 5¢=2

False

>>> 3<%

True

22>

Special Literals:

Python contains one special literal i.e., None. It is spe
represent the absence of a value or null value.

None is used to specify to that field that is not created. It is also used for end of lists in Python.

cial constant in Python programming that

Example: For special literal.
»>>> vall=10
>>> val2=None
»>> vall
10
»>> val2
»>> print (val2)
None
>

N is in uppercase here

5.

(i) List:

Literal Collections:
Collections such as tuples, lists and dictionary are used in Python.

ta types. Lists are mutable i.e., modifiable. The values stored in

o List contain items of different da
list are separated by commas(,) and enclosed within a square brackets ([]). We can store different

type of data in a list.
o Value stored in a list can be retrieved using the slice operator([] and [:]). The plus sign (+) is the

list concatenation and asterisk(*) is the repetition operator.

(ii) Tuple:

o mpleisusedtostare-thesequznﬂofimmutablepython objects.
o AtuplecanbemwdbyusingObradcmMsepmtedbyoonmm(,).

(iii) Directory:

o Thedirectmympythonisacdhcﬁonofkeyvaluepamﬁeatedusing{}.
o Thokeymdvalue.msqparamdbyacohn () and the elements/items are separated by

commas (,).

Scanned with CamScanner

with " hon'
Porlneralcoﬂecﬁons.

programm!

Example:
create 1
> numbers=[1,2,3,4,5;

ist

6,7]
>>
>>> Pri"t("umbers)

create tuples
> list=(‘a’,‘b’:'c’)
>>> print(listl)
create dictionary
> list2={'fname’:‘vijay’,
> print(listz)
Output:

[1,2,3,4,5,6,7]
(ra: . ‘h?) tc})
{“fname’: ‘vijay’, ‘1name’: ‘patil’}

6. Value and Type of Literals:

gramming languages contain data in terms of input an

1name’: ‘patil’}

d output and any kind of da
¢ Pro

presented in terms of value. -
Value can be of numbers, strings or characters. To know the exact type of any value, python provid

in-built method called type.
Syntax: type(value)
Example: For value and type literals.

>>> type('hello python')
<class 'str'>

>»> type('a')
<class 'str'>
>>> type(123)
<class 'int'>
>»>> type(11.22)
<class 'float'>

ﬁmdentation

* Most of the programming languages like C, C++, Java

use braces { } to define a block of code. Python uses
indentation.

:Acode block (body of a function, loop etc.) starts with
indentation and ends with the first un-indented line,
The amount of indentation is up to us, but it must be
consistent throughout that block.

. Ene:?rally, four whitespaces are used for indentation
1 preferred over tabs, (See Fig, 18).

Indentation hej
link Ps 10 convey a better structure

between control f

of a program to the readers, It is used to clari
conditions or loops, and code contained with

Scanned with CamScanner

FTOQIaninmg wiill_ryumnon 1.13

S Introduction and Syntax of Python Program

Example 1: For indentation.

Example 2: For indentation in python.
>>> for i in range (1,11):

>>> for 1 in range(1,11):

print(i) print(i)

Output: if i==5:

1 break

; Output:

a 1

5 2

6 3

7 4

8 5

9

10

Commenting in Python
¢ Comments are meant for computer programmers for better understanding a program. Python

interpreter ignores the comment in the program.
1. Single Line Comment (#):

Single line comments are created simply by beginning a line with the hash (#) character, and they
are automatically terminated by the end of line.
Example 1: For single line comment. Example 2: For single line comment.

print is a statement print(‘Hello Python’) # print is a statement
print(‘Hello Python’)

* When the python interpreter sees #, it ignores all the text after # on the same line.
2. Multiple Line Comments (*’):

In some situations, multiline documentation is required for a program. If we have comments that
extend multiple lines, one way of doing it is to use hash (#) in the beginning of each line. Another
way of doing this is to use quotation marks, either "' or """,

* Similarly, when it sees the triple quotation marks " it scans for the next ™ and ignores any text in
between the triple quotation marks.

Example: For multiline comment.
""'This is first python program
Print is a statement'''

EE} pYTHON ENVIRONMENT SETUP (INSTALLATION AND WORKING OF IDE)

* Python distribution is available for a wide variety of platforms such as Unix, Linux, Macintosh and
Windows. We need to download only the binary code applicable for the platform and install Python.

* The most up-to-date and current source code, binaries, documentation, news, etc. is available on the
official website of Python https://www.python.org/.

Installing Python in Windows:

Step1 : Open any internet browser then type http:// /www.python.org/downloads/ in address bar
and Enter. The Home page will appear, (See Fig. 1.9).

BB L e em s -

O s & et s e

2 jthon

Fig. 1.9: Home Page

Scanned with CamScanner

Scanned with CamScanner

Programming with 'Pyihon'
Zrogremiming with 'Python' . 145 A Introduction and Symax of Python Program
Step5 : After complete the installation close the windows,

B Pyhen 171 (0 et} Setug,

-

Setup was successful

Specsl thanes 1o Mark Hammaed WITrR whee paary oA

fresdy s srac Wirdom rpetine, Python for Wirdows weid
U8 ba Pythan for DO

Hew to Python?

d dl oty mentatrn
o

SUT with the ool toleogl snd

See wtats riem in tha 1#imans,

© Oisable path tlength limit

Changes pow mactene (rmfapuriion 10 sise pregreme wetudeg P o ts
Iryptes tha 240 charsctor “WAK_PSTH" bentalion

pgthén
windows

Fig.1.13
Starting Python in different Modes:

1. Starting Python (Command Line):

* A Python script can be executed a
on the application,

* In command line mode, we type the Python programming program on the Python shell and the
interpreter prints the result. The steps are given below:

Step1 : Press Start button, (See Fig. 1.14).

t command line also. This can be done by invoking the interpreter

Recently added
32-bt)
Expand

Most used

Wg Word 2016

4
™

£ [fype here to search

Fig. 1.14

Scanned with CamScanner

1.16 introduction and _Sﬂa_;; of p,'ﬂhon l

Py

Programming with ‘Python______——

1 programs and then click on Python 3.7 (32 bit) as shown in Fig, 1.14, We wil
. Clickon ALl FI
Step2 :

{ and line.
he Python interactive prompt in Python comm
the

T

Fig.1.15

Python command prompt contains an opening message >>> called command prompt, Tha

cursor at command prompt waits for to enter Python command. A complete commang

[-

called a statement. For example check first command to print message, in Fig. 1.16,

Fig.1.16

Step3 : Toexit from the command line of Python, use Ctrl+z or quit

() followed by Enter.
2. Starting Python IDLE:

' . 3
When we install Python 3, we also get IDLE (Integrated Development Environment). IDLE includes

S . 7
color syntax-highlighting editor, a debugger, the Python Shell, and a complete copy of Python

online documentation set,

The steps are given below:
Step1 .

Press Start button and click on IDLE (Python 3.7, 32-bit) options.

Scanned with CamScanner

Prngmmmlny with 'Python’

Introduction and Byntax of Python Program

Hew writhy midobedt

O Pyt 1.7 (03 b}

& Pyihusr 1.7 Mbondyle Do (42 1ia)
& IOLE (Python LT 12 -hit)
L apardd
Mot uyed

i
P>

Word 2016

Google Chrome

Tile Explores
Aciobnt Reader OC

Microvolt Ldge

4 (e

VLC media player

@ 3D Viewer

£ Type here to search

Fig.1.17

Step 2 : We will see the Python interactive prompt i.e. interactive shell.

[Python 3.7.1 Shen 1 o] %
File Edit Shell Debug Options Windew Help
Pythen 3.7.1 (v3.7.1:2€0ec2c36a, Oct 2O 2040,

1)] on wini2
Tyvpe "help®, “copyright®, "oredica® or *license ()" for more Anformation.

»n>

14:05:16) [M5C w.1915 32 pit (Inte &

>y = ‘EEH

Fig.1.18

Python interactive shell prompt contains opening message >>>, called shell prompt. A

cursor is waiting for the command. A complete command is called a statement. When we

write a command and press enter, the python interpreter will immediately display the

result.

Scanned with CamScanner

l. f 1.18 Introduction and Syntax of

with 'Python’
- o >
[@ Python 3.7.1 Shel
; Window Help
file Eda Shell Debug Options oo 20 2018, 14:05:18) [MSC v.1915 32 bit (Iate &

for more informacion.

Fig. 1.19

Executing Python Programs Scripts:

e In Python IDLEs shell window, click on File, and select the New File or press Ctrl+N.

— o} x

Window Help
c3éa, Oct 20 2018, 14:05:16) [MSC w.1915 32 bit (Inte

meredits™ or "license ()™ £or more information.

. . Fig.1.20
n as we click on New File, the window appears as shown in Fig. 1.2
= g 1.21.
File Edt Format Run Options Window Help

= o x

Scanned with CamScanner

Scanned with CamScanner

e e A L A AR Ty \ VLT

[EX} RUNNING SIMPLE PYTHON SCRIPTS TO DISPLAY ‘WELCOME’ MESSAGE

« Afterclicking Run Module,

——- e e e LN

Programming with FyInoT
we will get the output of program on Python shell.

= a X

(@ Python 3.7.1 Shel

file Edt Shel Debug Options Window Help _ =
pychon 3.7.1 (v3.7.11260ec2c36a, Oct 20 2018, 14:05:16) [MSC v.1915 32 bit (Inte A
1)] on win32
Type "help”, "copyright®, "eredits™ or "license()* for more information.

= RESTART: C1/Usera/viday/AppData/Local/Programs/Pychon/Python37-32/cest py =

Hello Python
This is First Script
»> |

v

 in7 Cobd|

Fig. 1.25

There are two modes for executing Python program namely Interactive mode programming gna
Script mode programming.
In interactive mode programming, interpreter is invoked and the programmer can code state
directly to the interpreter without passing a script file as a parameter.
In script mode programming, the complete script is written in an editor such as Notepad
Windows and then interpreter is invoked with a script parameter. It begins execution of the g
and continues until the script is finished,

1. Interactive Mode Programming:
* Click on All Programs and then click on Python 3.7 (32-bit). We will see the Python interactive promp
in Python command line.
* This method invokes the interpreter without passing a script file and brings up the follo
prompt, (See Fig. 1.26).
® Python 3.7 (64-bit) - 0 X
Fig. 1.26
2. Script Mode Programmin g:
* Invoking the i
the scripgt isefilnnitsi?;e:\er; e sc1.'1pt.p arameter begins execution of the script and continues &
¢ Letuswritea simp] .pyt]:n the script is finished, the interpreter is no longer active. ;
e Python : : - ollowls
source code in a test. py file. PrOBram in a script. Python files have extension Py. Type the :
print“Welcome, Python! ™
h___

Scanned with CamScanner

programming with "Python’ 1.21 Introduction and Syntax of Python Program

« We assume that we have Python interpreter set in PATH variable. Now, try to run this program as
follows:
¢ python test.py
Output:
Welcome, Python!
« On Linux OS to execute a Python script modified test.py file:
#!1/usr/bin/python
print"Hello, Python!"

« We assume that we have Python interpreter available in /usr/bin directory. Now, try to run this
program as follows:

$ chmod +x test.py # This is to make file executable
$./test.py
Hello, Python!

%3 PYTHON DATA TYPES

+ The type of data value that can be stored in an identifier/variable is known as its data type.

* The data type determines how much memory is allocated to store data and what operations can be
performed on it.

+ The data stored in memory can be of many types and are used to define the operations possible on
them and the storage method for each of them.

» Python handles several data types to facilitate the needs of programmers and application developers
for workable data.

Declaration and Use of Data Types:

* One of the main differences between Python and strongly-typed languages like C, C++ or Java is the
way it deals with types. In strongly-typed languages every variable must have a unique data type.

» For example, if a variable is of type integer, solely integers can be saved in the variable. In Java or C,
every variable has to be declared before it can be used. Declaring a variable means binding it to a
data type.

« Declaration of variables is not required in Python. If there is need of a variable, we think of a name
and start using it as a variable.
* Inthe following line of code, we assign the value 42 to a variable:
i=142
* The equal "=" sign in the assignment shouldn't be seen as "is equal to". It should be “read” or
interpreted as "is set to", meaning in our example “the variable i is set to 42", Now we will increase
the value of this variable by 1:

»> 1 =3 43

>>> print i
43
23>
* Python has various standard data types that are used to define the operations possible on them and
the storage method for each of them. Data types in Python programming includes:
1. Numbers: Represents numeric data to perform mathematical operations.
String: Represents text characters, special symbols or alphanumeric data.
List: Represents sequential data that the programmer wishes to sort, merge etc.
Tuple: Represents sequential data with a little difference from list.
Dictionary: Represents a collection of data that associate a unique key with each value.
Boolean: Represents truth values (true or false).

;o swN

Scanned with CamScanner

Introduction and Syniax of Python Program

%8 Numbers pata Type
' e numeric v

Number data types stor
them.
numbers and complex

Integers, floating point
are defined as int, float and complex in Python.

alues. Number objects are created when we assign a value to

numbers falls under Python numbers category. They

mber is a number without any decimal

::'- ntegers:
An int data type represents an integer number. An integer nu
or fractional point.
le and stores integer value 57.

called the int type variab

" For example, a =57, here a is
range - 2147483648 to 2147483647.

These represent numbers in the
. ;ﬁatmg Point Numbers:

ge float data type represents th
atains a decimal point. Examples of float

oint number is a number that

e floating point number. The floating p
_3.445, 330.44, For example,

ing point numbers, 0.5,

mplex Numbers:
.complex number is a number that is written in the form of a+

“the number and b represents the imaginary part of the number.
the suffix] or j after b represents the square root value of -1. The part a and b may contain the

integers or floats. For example, 3+5j, 0.2+410.5) are complex numbers.

example, in C=-1-5.5j, the complex number

.of the variable C as a complex type. Fig. : of Numrs Dn Type

can use the type() function to know which class a variable or a value belongs to and the
ance() function to check if an object belongs to a particular class. -

gers (int Data Type):
.r is a whole number that can be positive (+) or negative (). Integers can be of any length, it

limited by the memory available.

sle: For number data types are integers.
5> a=10

> 2

bj. Here, a represents the real partof

ce, the Python interpreter takes the data

mputer’s memory space allows.
programming one can write inte -
. . gers in Hexadecimal Bin:
) formats by using one of the following prefixes to the inlea(::se 16). Octal (se AN
4wl . S o A e = ‘.. e) 3 3

| Interpretation | Base

i

S ey
o

Y —_— - o
__ 1 |‘Obor’op Binary
- 2. ‘00’ or ‘00’ 2
:- 3. loxl' Or ‘ox' H 8
exadecimal 16

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

_ | = - 1.26 Introduction and Syntax of Python Program

|
| String Built-in Methods:
« String objects also have several useful methods to report various characteristics of the string, such
as whether it consists of digits or alphabetic characters or is all uppercase or lowercase,

No, | String Operation Explanation Example 48

wi

1 _]__'____..- Adds two strings together. X = "hello"+"world"
{ Replicates a string. _ X = = 7928
3. R | upper Converts a__sf_ring to uppercase, x.upper()
lower Converts a string to lowercase. x.lower()
title Capitalizes the first letter of each | x.title()
- word in a string.
find, index Searches for the target in a string. x.find(y) x.index(y)
rfind, rindex Searches for the target in a string, | x.rfind(y) x.rindex(y)
from the end of the string.
startswith, Checks the beginning or end of a | xstartswith(y) x.endswith(y)
endswith string for a match.
replace Replaces the target with a new | x.replace(y,z)
string.

strip, rstrip, Istrip | Removes whitespace or other | x.strip()
characters from the ends of a
string.

encode Converts a Unicode string to a bytes | x. encode("utf 8")
object. .

2] List Data Type
List is an ordered sequence of items. It is one of the most used datatype in Python and is very flexible.

can contain heterogeneous values such as integers, floats, strings, tuples, lists and dictionaries
it they are commonly used to store collections of homogeneous objects.

lhe list data type in Python programming is just like an arra
e y that can store a group of elements an
can refer to these elements using a single name, . s e

-_:-]a' list is pretty straight forward. Items separated by commas (,) are enclosed within

e: For list,
~ > first=[10, 20, 30]
msl Sm['One', "Two", "Threen]

homogenous values in list
homogenous values in list

At 'M', 'Thl‘ee']
third=[10, "one", 20, "two"]

heterogeneous values in list

prints the concatenated lists

Scanned with CamScanner

Scanned with CamScanner

gramming with ‘Python’ 1.28 Introduction and Syntax of Py,
When we have the large amount of data, the dictionary data type is used. The di‘{tiqnary
mutable in nature which means we can update modify/ update any value in the dictionary,

Items in dictionaries are enclosed in curly braces (} and separated by the comma (). A ggjg
used to separate key from value. Values can be ¢ assigned and accessed using square braces ([

?:nmple: For dictionary data type.
>3 dicl-{l:"First“,"Second“:2}
»»> dicl
{1: 'First’, ‘Second': 2)
»>> type(dicl)
<class ‘dict™
>>> dic1[3])="Third"
> dicl
{1: ‘First’, ‘second': 2, 3: 'Third'}
>>> dicl.keys()
dict_keys([1, ‘Second', 3])
»>> dici.values()
dict_values([‘'First’, 2, ‘Third'])

Py INPUT AND OUTPUT IN PYTHON PROGRAMMING Rt

Input means the data entered by the user of the program. In python, the input() functi
accept an input from a user. The raw_input () function available for Input on older version.

without any argument
with argument

3

Syntnx:variable_name=input()
variable name=input(‘String’)
inmph: For input in Python.
>>> input()
Hello python

‘Hello python
»>>> x= input ("Enter data:")

Enter data: 11.22
>»»> print(x)

11.22
Output means the data comes from computer after processing. In Python progra

function display the input value on screen.
gzgtnx;print(expression/constant/variable)
Example: For output in python.

>>> print ("Hello")

Hello

»>> a="Hello"

»>> b="Python"

M1 .i.E?I.'. o

4
i

4

Scanned with CamScanner

— ST T RS |

programming with ‘Python' = 1.29 Introduction and Syntax of Python Program

Additional Programs:

1. Program to find the square root of a number.
x=int(input("Enter an integer number:"))
ans=x**0.5

print(“"Square root= ", ans)
Output:

Enter an integer number: 144
Square root= 12.0

2, Program to find the area of Rectangle.
l=float(input("Enter length of the rectangle: "))
b=float(input("Enter breadth of the rectangle: "))
area=1*b
print("Area of Rectange= ",area)

Output:

Enter length of the rectangle: S
Enter breadth of the rectangle: 6
Area of Rectange= 30.0

3. Program to calculate area and perimeter of the square.
int(input("Enter side length of square: "))
area=side*side
perimeter = 4*side
print("Area of Square =", area)
print("Perimeter of Square =", perimeter)
Output:

Enter side length of square: 5
Area of Square = 25
Perimeter of Square = 20

4. Program to calculate surface volume and area of a cylinder.
pi=22/7
height = float(input('Height of cylinder: "))
radian = float(input('Radius of cylinder: "))
volume = pi * radian * radian * height
sur_area = ((2*pi*radian) * height) + ((pi*radian**2)*2)
print(“Volume is: ", volume)
print(“Surface Area is: ", sur_area)

Output:

Height of cylinder: 4

Radius of cylinder: 6

Volume is: 452.57142857142856
Surface Area is: 377.1428571428571

5. Program to swap the value of two variables.
numl=input("Enter first value:)
num2=input ("Enter second value: i
print(“Numbers before swapping”)
print("numl= “,numl)
print(“num2= ",num2)
temp=numl
numl=num2

Scanned with CamScanner

4
e z T
wmm ——

num2=temp)
print("Numbers after swapping)
priﬂt(‘null- * numl)
pr&nt(‘nnnz- * numd)

Output:

Enter first value: 10

Enter second value: 20

Numbers before swapping

_ pumis 10
pum2= 20
| Numbers after swapping

= 10 T I

= 20
e ————

ctice Questions
What is Python pmgramminglangunge?
Give short history for Python.
Enlist applications for Python prog
‘4. What are the features of Python?
5. Listany four editors used for Python programming.
—mon programming language is interpreted and intrac
7. Howtorun python scripts? Explain in detail.

8 What s interpreter? How it works?

9. Explain the following features of Python programming:
() simple

(i) Platform independent

ramming.

tive' comment this sentence.

Slain about the need for learning Python programming and its importance.
ccribe the internal working of Python diagram matically.
e in brief about characters set of Python.
e in brief about any five keywords in Python.
s the steps to install Python and to run Python code.
15. What is the role of indentation in Python?
16 . How to comment specific line(s) in Python program?
g '_ : is variable? What are the rules and conventions for declaring a variables?
it are the various data types available in Python programming.
hat are four built-in numeric data types in Python? Explain.
1atis the difference between interactive mode and script mode of Python.
thon has developed as an open source project. Justify this statement.
fine the following terms:
1de: ﬁﬂﬂl’

LlIters

Scanned with CamScanner

€ |

Python Operators and

Control Flow Statements

T —=

Chapter Outcomes...

Write simple Python program for the given arithmetic expressions.

Use different types of operators for writing the arithmetic expressions.

Write a 'Python’ program using decision making structure for two-way branching to solve the given
problem.

® Write a 'Python’ program using decision making structure for multi-way branching to solve the given
problem.

Learning Objectives...

® To understand Basic Operators in Python Programming

@ To learn Control Flow and Conditional Statements in Python
®] To study Looping in Python Programming

W] To understand Loop Manipulation Statements in Python

EX] wrropucTioN

* Operators are the constructs which can manipulate the value of operands. Consider the expression
4 +5 =9, Here, 4 and 5 are called operands and + is called operator. The Python language provides a
rich set of operators.

* The operator and operand when combined to perform a certain operation, it becomes an expression.
For example, in expression x + y, x and y are the variables (operands) and the plus (+) sign is the
operator that specifies the type of operation performed on the variables.

* Inany programming language, a program is written as a set of instructions. The instructions written
in programs are termed as statements.

* In Python, statements in a program are executed one after another in the order in which they are
written. This is called sequential execution of the program.

* But in some situations, the programmer may need to alter the normal flow of execution of a
program or to perform the same operations a number of times.

* For this purpose, Python provides a control structure which transfers the control from one part of
the program to some other part of the program.

* A control structure is a statement that determines the control flow of the set of instructions i.e., a
program. Control statements are the set of statements that are responsible to change the flow of
éxecution of the program.

* There are different types of control statements supported by Python programming like
decision/conditional control, loop/iteration control and jump or loop control.

[2.1]

S

.
' SRR

Scanned with CamScanner

Programming with ‘Python’

rator is a special symbol th

ion. An ope

An operator is a symbol which specifies a specific act iy .
the if'aterpreter toyperform a specific operation on the operands. The operands can be |
variables or expressions. Sl
An operand is a data jtem on which operator acts. ‘
Operators are the symbol, which can manxpu].ate the . ' 4
value of operands. Some operators require two 1‘ '
operands while others require only one. l

5 and 2 are Operands

Consider the expression 5 + 2 = 7. Here,
called the operands and + is called the operator.

ry operators or binary operator.

Fig. 2.1: Concept of Operator and

In Python, the operators can be una

Unary Operators:]
y one operand. These operators are basically used to

Unary operators are operators with onl
sign to the operand. +, -, ~ are called unary operators.

Syntax: operator operand

Example:
>>> x=18
25> +X
1e
>3> -X
-10
33> ~X

-11
The invert (~) operator returns the bitwise inversion of long integer arguments. Inversion of x ¢

computed as ~ (x + 1).

Binary Operators:
Binary operators are operators with two operands that are manipulated to get the result. Th

also used to compare numeric values and string values.

Syntax: operandl operator operand2
Binary operators are: **,*, /, %, +, -, <<, >>, &, |, A, €, >, <=, >=, ==, |=, <>
1 r r T —— .

Example:
>>> x=10
>3> y=20
32> X+y
>>> =X
30
>>> 243
5

L]

) ion:
An expression is nothing b i
j utaco i
il g mbination of Operators, variables, constants and -8
ction C

In other words, an ion i
, an expression inati :
evaluates to produce a value. R literals, variables and operators ths

Forexamples: 1 + g

Python operators allo
supported by Il"’s};'fhcm A2 €rs 10 manipulate da
mparison operators L‘:':_l“des Arithmetic operators ta or operands, The types C
operators » Logical operators, Bi + Assignment
Operators, Identity op;‘l'-‘:mu. Rel
tors and

Scanned with CamScannér .-

I A . ¥ S R TR AR,

programming with 'Python'
of g s 2.3 Python Operators and Control Flow Statements

EX®] Arithmetic Operators

;hlflti;;;é::?:;‘;ﬂ;ﬂ?r?t_om Alﬁerform basic arithmetic operations like addition, subtraction,
vision. All arithmetic operators are binary ope ecaus

operations on two operands. 3 ry operators b e they can perform
Thgtr . Ca;re seveln- a_rith_metic operators provided in Python programming such as addition,
subtraction, multiplication, division, modulus, floor division, and exponential operators.

Assume variable a holds the value 10 and variable b holds the value 20.

~Sr. | Operator Operator R
Lo, Symbol . Name Description m
1 + Addition Adds the value of the left and right operands. >»> a+b
30
2. - Subtraction Subtracts the value of the right operand from | >>> b-a
the value of the left operand. 10
3. = Multiplication | Multiplies the value of the left and right | >>> a*b
operand. 200
4, / Division Divides the value of the left operand by the right | >>> b/a
operand. 2.0
5 i Exponent Performs exponential calculation. >>> a%¥*2
100
6. % Modulus Returns the remainder after dividing the left | >>> a%b
operand with the right operand. 10
7. 1/ Floor Division | Division of operands where the solution is a | >>> b//a
quotient left after removing decimal numbers. | 2

Assignment Operators (Augmented Assignment Operators)
Assignment operators are used in Python programming to assign values to variables. The
assignment operator is used to store the value on the right-hand side of the expression on the left-

hand side variable in the expression.
For example, a = 5 is a simple assignment operator that assigns the value 5 on the right to the

variable a on the left.
There are various compound operators in Python like a += 5 that adds to the variable and later
assigns the same. It is equivalenttoa=a+5.

Following table shows assignment operators in Python programming:

Assigns values fror':'i ﬂght side operanas to | ¢ = a + b assigns value of ';a +b

15.4 -~ left side operand. intoc
" : += It adds right operand to the left operand and | c+=ais equivalenttoc=c+a
) assign the result to left operand.

_ It subtracts right operand from the left | c-=aisequivalenttoc=c-a
i oo Wd d assign the result to left operand.
"= | It multiplies right operand with the left | c*=aisequivalenttoc=c*a
,rand and assign the result to left operand.
ide hﬁﬁmﬂ with the right operand | c /=ais equivalenttoc=c/a
ssign the result to left operand.
“modulus using two operands and | c %=ais equivalenttoc=c%a
ssult to left operand.
al (p calculation on | c**=ais equivalenttoc=c*'a
il 1o the left

1) calculation on | c//=aisequivalenttoc=c//a
alue to the left

Scanned with CamScanner

Programming with ‘Python’
Relational or Comparison Operators

» Comparison operators in Python progra
Relational operators either return Trueor F

" M R T T L S —

2.4

alse according to the condition.

e Assume variable a holds the value 10 and variable b holds the value 20.

mming are binary operators and used to compare yaj

Sr. No. Operator Description . xample
1 — If the values of two operands are equal, then | >>> (a==b)
(Equality Operator) the condition becomes true. False
2. I= If values of two operands are not equal, then | >>> (al=b)
(Not Equality Operator) condition becomes true. True
3. > If the value of left operand is greater than the | >>> (a>b)
(Greater Than Operator) | Value of right operand, then condition becomes | False
true.
8 silis If the value of left operand is less than the | >>> (a<b)
(Less Than Operator) value of right operand, then condition becomes | Tpye
true. 4
S |>= If the value of left operand is greater than or | >>> (a>=b)
(Greater Than Equal to | equal to the value of right operand, then | Falce
Operator) condition becomes true. .
6. <= If the value of left operand is less than or equal | >>> (a<=b) i
(Less Than Equal to | to the value of right operand, then condition | Tpye)
Operator) becomes true.
Logical Operators

¢ The logical operators in Python programming are used to combine one or more relational
expressions that result in complex relational operations. The result of the logical operator is
evaluated in the terms of True or False according to the result of the logi Y preasion T IS

* Logical operators perform logical AND, logical OR and logical NOT operations. These operations

used to check two or more conditions. The resultant of this rator is al lean v
(True or False). e ways 8 S :

® Assume variable a holds True and variable b holds False then:

1. AND. If both the operands are true then (aand bi is
(Logical AND Operator) | condition becomes true.
' - OR If any of the two o
) perands are non-zero | (a or b) is True

(Logical OR Operator) then condition becomes true. :) |
3, NOT Used to reverse the logi -~
cal state of its | Not(aand b)is True. |
(Logical NOT Operator) | operand. e mdie)
e
m Bitwise Operators E

Scanned with CamScanner

programming with 'Python'

2.5

Python Operators and Control Flow Statemenis

» Following table shows bitwise operators assume a=10 (1010) and b=4 (0100).

[;;_, No. Operator Description Example
F 1 & This operation performs | a& = 1010 & 0100 = 0008 =0
' (Bitwise AND Operator) | AND operation between
operands. Operator copies
a bit, to the result, if it
exists in both operands
2. - This operation performs | alb = 1010 | 0160 = 1110 = 14
(Bitwise OR Operator) OR operation between
operands. It copies a bit, if
it exists in either operand.
3 T This operation performs | a*b=1010 ~ 0160 = 1110 =14
(Bitwise XOR Operator) | XOR operations between
operands. It copies the bit,
if it is set in one operand
L but not both.
4. 5 It is unary operator and | ~a= ~ 1010 = 8101
o has the effect of 'flipping'
(Bitwise Ones 5 : 2
Complement Operator) bits i.e. opposite the bits of
operand.
5. << The left operand's value is | a<<2 = 1010 << 2 =1910e@ = 4@
(Bitwise Left Shift | moved left by the number
Operator) of bits specified by the
right operand.
6. >> The left operand's value is | a>>2 = 1810 >> 2 =0918 = 2
(Bitwise Right Shift | moved right by the number
Operator) of bits specified by the
right operand.
» Following table shows the outcome of each operations:
A [8 [as [as | aw 2
0 0 0 0 0 1
0 1 0 1 1 1
g 0 0 1 1 0
1 1 1 1 0 0
Identity Operators

* Sometimes, in Python programming, need to compare the memory address of two objects; this is
made possible with the help of the identity operator.
* Identity operators are used to check whetper both operands are same or not. Python provides ‘is’ and
‘is not" operators which are called identity operators and both are used to check if two values are
located on the same part of the memory. Two variables that are equal does not imply that they are

identical.
T i T R _ ;
Sr.No. | © PRI IR - TaescEiptior _ Ex
1. is Return true, if the variables on either side of the | >>> a=3
operator point to the same object and false | ,,, p-3
otherwise. >>> print(a is b)
True
9 is not Return false, if the variables on either side of the | >>> a=3
‘ operator point to the same object and true |, p=3
otherwise. >>> print(a is not b)
False

Scanned with CamScanner

Scanned with CamScanner

Programming with ‘Python'

27 Python Operators and Control Flow Statements

Example:

>>> x="Hello World"

>>> print("H" in x)

True

>>> print(“Hello" not in x)
False

>>> y={1:"a"; 248"}

>>> print(1 in y)

using string

using dictionary

True

>>> print("a" in y)

False

>>> z=("one","two","three") # using tuple
>>> print ("two" in z)

True

Python Operator Precedence and Associativity

.

An exp_ressiot? may include some complex operations and may contain several operators. In such a
scenario, the interpreter should know the order in which the operations should be solved. Operator
precedence specifies the order in which the operators would be applied to the operands.

Moreover, there may be expressions in which the operators belong to the same group, and then to
resolve the operations, the associativity of the operators would be considered.

The associativity specifies the order in which the operators of the same group will be resolved, i.e.,
from left to right or right to left.
Python Operator Precedence:

When an expression has two or more operators, we need to identity the correct sequence to evaluate
these operators. This is because the final answer changes depending on the sequence thus chosen.

Example 1:
10-4*2 answer is 2 because multiplication has higher precedence than subtraction.

But we can change this order using parentheses () as it has higher precedence.
(10-4)*2 answer is 12

Example 2:

10+5/5
When given expression is evaluated left to right answer becomes 3. And when expression is

evaluated right to left, the answer becomes 11.

in order to remove this problem, a level of precedence is associated with the operators.

Snexerare fies the importance of each operator relative to the others.

Precedence is the condition that speci

Associativity of Pythons Operators: :
When two ot;erators have the same precedence, associativity helps to determine which the order of

operations Associativity decides the order in which the operators with same precedence are

executed.

es of associativity. .
gei;ﬁr;;fts The operator of same precedence is executed from the left side first.

(i) Right-To-Left: The operator of same precedence is executed from the right side first.
Most of the operators in Python have left-to-right associativity.

Example:
>>> 5%2//3
3
>>> 5%(2//3)

Scanned with CamScanner

= .
Programming with ‘Python’ /’:;ce to the lowest.

8 -L" - i ' eCEd
- st pT
The following table lists all operators from highest P

NM“

Exponenw
s, Bitwls

Unary plus, Una minu oo division, Modulus

Multiplication, pivision,
Addition, Subtraction

Bitwise left and ri t shift o erato Left to

Bitwise AND

STewiseXOR . .. ‘et
BiowseOR I Ae

Comparison Operator ___—— Lefttol
Equalityoperators —— i
e Right to Lef

Assignment Operators

Identity

| Membership operators
| Logical Operators NOT, AND, OR
. . R v ——— e

L.
- 2= e .

rol flow is ordn pgram's code executes. The cont
is regulated by conditional statements, loops and loop manipula

g provides a control structure which transfers the control fro
her part of program. A control structure is a statement that de

ation, (True or False). executes a particular|

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Programming with ‘Python’ 2,18 __Python Operators and Control Flow Statements

yX3 LOOP MANIPULATION/LOOP CONTROL STATEMENTS

+ In Python, loop statements give us a way execute the block of code repeatedly. But sometimes, we
may want to exit a loop completely or skip specific part of loop when it meets a specified condition. 1t
can be done using loop control mechanism.

» Loop control statements change execution from its normal sequence., When execution leaves 3
scope, all automatic objects that were created in that scope are destroyed.

» Loop control statements in Python programming are basically used to terminate a loop or skip the
particular code in the block or it can also be used to escape the execution of the program.

« The loop control statements in Python programming includes break statement, continue statement
and pass statement.

break Statement

e The break statement in Python terminates the current loop and resumes execution at the next
statement, just like the traditional break found in C.

Syntax: break
Control Flow Diagram for break Statement: Example: For break statement,
Enter loop i=0
False while i<1@:
i Condition = i=i+1
if i==5:
break
True print("i= ",1)
a Output:
i=1
i=2
Y i=3
Exit loop i=4

m continue Statement

* The continue statement in Python returns the control to the beginning of the while loop.

* The continue statement rejects all the remaining statements in the current iteration of the loop and
moves the control back to the top of the loop.

Syntax: continue

Control Flow Diagram for continue Statement: Example: For continue statement.
Enter loop i=0
2 while i<10:
exprg::*,lon e i=i+1
of loop if i==5;
continue
print(“i= ",1i)
Output:
i=1
L i=2
] i=3
Exit loop
i=4
i=6
i=7
i=8
i=9
i=10

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

d Control Flow § i
mw_ k Ll . B Python Operators an ow%

Output;

enter a number: 121
number is palindrome
enter a number: 123
number {s not palindrome

S i ‘. _—_‘-‘—-""‘

Program to return prime numbers from a list.
Liste(3,2,9,10,43,7,20,23)
print{"liste", 1ist)
=[]
PrART("Prime numbers from the list are:")
for ain list:
prime=Trye
for 1 in range(2,3):
1€ (aXi==0):
prime=False
break
if prime:
1.append(a)
print(l)
OQutput:
liste (3, 2, 9, 10, 43, 7, 20, 23]
Prime numbers from the list are:
(3, 2, 43, 7, 23)

9. Program to add, subtract, multiply and division of two complex numbers.
print("Addition of two complex numbers : ", (4+33)+(3-79))

print("Subtraction of two complex numbers : ", (4435)-(3-73))
print("Multiplication of two complex numbers : "5 (4+33)*(3-73))
print("Division of two complex numbers : ", (4+433)/(3-73))

Output:

Addition of two complex numbers : (7-43)

Subtraction of two complex numbers : (1+103)

Multiplication of two complex numbers : (33-197)

division of two complex numbers : (-o.1551724137931e34s+e.53793193443275371)

to find the best of two test average marks out of three test's marks accepted from the

l=int (input(‘enter a number'))
2eint(input(enter 2nd number'))
nt(input('enter the 3rd number '))
1=(nl+n2)/2

g2=(n2+n3)/2

avgi=(n3n1)/2

‘maxm=max(avgl, avg2, avgl)

print (maxm)

Scanned with CamScanner

Scanned with CamScanner

Data Structures
in Python

Chapter Outcomes...

@ Write Python program to use and manipulate lists for the given problem.

@ Write Python program to use and manipulate tuples for the given problem.

(] Write Python program to use and manipulate sets for the given problem.

@ Write Python program to use and manipulate dictionaries for the given problem.

Learning Objectives...

® To learn Concepts of Lists like Defining, Accessing, Deleting, Updating and so on

@ To understand Basic List Operations and Built-in List Functions

@ To Study Concept of Tuples with Accessing, Deleting, Updating Values in Tuples

@ To study Basic Tuple Operations and Built-in Tuple Functions

®] To understand Concepts of Sets with Accessing, Deleting, Updating Values in Sets

[w| To understand Basic Set Operations and Built-in Set Functions

® To know Concepts of Dictionaries with Accessing, Deleting, Updating Values in Dictionary
@ To study Basic Dictionary Operations and Built-in Dictionaries Functions

m INTRODUCTION

A data structure is a specialized format for organizing and storing data, so that various ms
can be performed on it efficiently and easily.

Any data structure is designed to organize data to suit a specific purpose so that it can be accessed
and worked with in appropriate and systematic manner/way. There are four data structures in
Python namely, list, tuple, dictionary and set.

A data structure that stores an ordered collection of items in Python is called a list. In other words, 2
list holds a sequence of items or elements.

Similar to a list, the tuple is an ordered sequence of items. A set is an unordered collection of unigue
items in Python. A dictionary in Python is an unordered collection of key value pairs.

The data types that are most used in Python are strings, tuples, lists and dictionaries. These are
collectively called as data structures.

EEY usts

A list in Python is a linear data structure. The elements in the list are stored in 2 linear order one
after other. A list is a collection of items or elements; the sequence of data in a list is ordered.

The elements or items in a list can be accessed by their positions ie. indices. The index in lists always
starts with 0 and ends with n-1, if the list contains n elements.

(3.1

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

g

w N Python — . 38 Data Structures in Python
» Following table shows the list methods used for updating list,

Sr. Y |

No. Syntax Argument Description Return Type

1. [append() | list.append(item) The item can be numbers, | Only modifies the
strings, another list, | original list. It does not

(S dictionary etc. return any value,

2. | extend() | listl.extend(1ist2) This extend() method | Only modifies the

takes a list and adds it to | original list. It doesn't
L — the end. return any value.

3. | insert() | list.insert(index, element) | This index is position | It does not return
where an element needs | anything; returns
to be inserted element - | None.
this the element to be
inserted in the list.

Let use see above methods in detail:

1.

append() Method: The append() method adds an element to the end of a list. We can insert a

single item in the list data time with the append().

Example: For append() method.

>>> listl=[10,20,30]

>>»> listl

(10, 20, 30]

»»> listl.append(40) # add element at the end of list
>>»> listl

[10, 20, 30, 49]

2,

extend() Method: The extend() method extends a list by appending items. We can add several
items using extend() method.

Example: Program for extend() method.

>»>> listl=[10, 20, 30, 40]

»>> listl

[10, 20, 30, 40]

>>> listl.extend([60,7€]) # add elements at the end of list
> listl

(10, 20, 30, 40, 60, 70]

insert() Method: We can insert one single item at a desired location by using the method insert()
or insert multiple items by squeezing it into an empty slice of a list.

ha:

Example: Program for insert() method.

B 119,115, 25]. 38, 20]

>»> listi=[10, 20]

>>> listl

[10,20)

»> listl.insert(1,30)

>>> listl

[1e, 30, 20]

»> listl=insert(1,[15,25])
>»> listl

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Data Structures in Python

Programming with ‘Python’ 3.10 —

It deletes and returns the last | »>>> listl

element of the list. 14,55 735 4,5, 3)
>>> listi.pop()

6. list.pop(item=1ist[-1])

s3> listil.pop(2)

8 list.remove(item) It deletes the given item from the | >»>> listl
list. [1, 2, 3, 4, 5]

s>> listl.remove(3)
>>> listl
[1, 2, 4, 5]

8, list.reverse() It reverses the position (index | >>> listl
number)oftheitemsinthelist. [1, 2, 3, 4, 5)
>»> listl.reverse()
>>> listl

[5, 4, 3, 2, 1]

»>»> listl

[1, 32, & 5)
»>> listl.sort()
s> [dy 35 2, 4, 5)

9. list.sort() Sorts items in the list.

10. list.sort([func]) It sorts the elements inside the list | >>> listl
and uses compare function if |1, 3, 2, 5, 4]

provided. >>> listl.sort()
>>> listl
[1, 2, 3, 4, 5]

%3 TUPLES | |

A tuple is also a linear data structure. A Python tuple is a sequence of data values called as items or
elements. A tuple is a collection of items which is ordered and unchangeable.
A tuple is a data structure that is an immutable or unchangeable, ordered sequence of
elements/items. Because tuples are immutable, their values cannot be modified.
A tuple is a heterogeneous data structure and used for grouping data. Each element or value that is
inside of a tuple is called an item.
A tuple is an immutable data type. An immutable data type means that we cannot add or remove
items from the tuple data structure.
In Python tuples are written with round brackets () and values in tuples can also b their
index values, which are integers starting from 0. 2 e accessed by
Tuples are the sequence or series values of different types separated by co .

; m 3 ust
like lists, but you can not change their values. y mas (,). Tuples are]

Difference between Tuples and Lists:

1. A values in the list can be replaced with another any time after i :
N ts cre les,
the values in it cannot be replaced with another, once tuples are created ation, whereas in tup
2. Lists allows us to add ‘ i p -
crseated. us to add new items to it, but tuple does not allow us to add new items, once it 1°
3, We generally use tuple for heterogeneous (different
(similar) data types. () datatypes and list for homogeneous

Scanned with CamScanner

= e e . e e T G ey

2 . 3.11 Data Structures in Python
4. Since, tuple are immutable, iterating through tuple is faster than with list. So there is a slight
performance boost.

s Tuple_;}that contain immutable elements can be used as key for a dictionary. With list, this is not
possible.

6. Tuples can be used as values in sets whereas lists can not.

i (Some tapies can be used as diCﬁonal'Y keys (specifically, tuples that contain immutable values

like strings, numbers, and other tuples). Lists can never be used as dictionary keys, because lists
are not immutable.

« Following table shows difference between strings, tuples and lists.

Immutable (Value cannot be modified) Mutable (values can be modified)
Strings Tuples List
_ str="hi" tuples=(5,4.0,'a") list=[5,4.0'/a']
1 | Sequence Unicode Ordered sequence. Order sequence.
character.
2. | Values cannot be modified. | Same as list but it is faster | Value can be changed dynamically.
than list because it is
immutable.
3. | Itisasequenceof Values stored in alpha Values stored in alpha numeric.
character. numeric.
4. | Access values from string. | Access values from tuples. | Access values from list.
S. | Adding values in not Adding values is not Adding values is possible.
possible. possible.
6. | Removing values is not Removing values is not Removing values is possible.
possible. possible.
Creating Tuple
» Tocreate tuple, all the items or elements are placed inside parentheses () separated by commas and
assigned to a variable.

* The syntax for defining a tuple in Python is: <tuple_name> = (valuel, value2, ... valueN).

Here, tuple name indicate name as the tuple and valuel, value2,..valueN are the values assigned to
the tuple.
Example: Emp (208, “Amar”, ‘M’, 50)

* A tuple in Python is an immutable data type which means a tuple once created cannot be
altered/modified. Tuples can have any number of different data items (integer, float, string, list
etc.

. 'l‘he)'simphﬂ method to create a tuple in Python is simply assigning a set of values to the tuple using

___ assignment operator (=). For example: t() # creates an empty tuple with name 't
Example: For creating tuples.

>>> tuplel=(10,29,38) # Atuplewith integer values

>>> tuplel

(10, 20, 30)

»>> tuple2=(18,"abc",11.22,"X") # Atuplewith different data types
>>> tuple2

(10, 'abc’, 11.22, 'X%) e o

D tljple3u('pythm',[10.23,39]s[111 abc",22.33]) # Nested tuple

»>> tuple3

(*python’, [10, 20, 30], [11, 'abc’, 22.33])

"

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

j.

—D:M

A il

3.15

Data Structures In Python

wﬂm with 'Python’

2. Membership Function:

?Vg can test if an iteTn exists in‘a tuple or not, using the keyword in. The in operator ev
if it finds a variable in the specified sequence and false otherwise.

aluates to true

—/—"'_.-.___—'__ -
gxample: For membership function in tuple.

>»> tuple

(10, 20, 30, 40, 50)
5> 30 in tuple

True

>»>» 25 in tuple
False

3, Iterating through a Tuple:

. Itef'ation over a tuple specifies the way which the loop can be applied to the tuple.
. Using a for loop we can iterate through each item in a tuple. Following examp

simply iterates over a tuple.

le uses a for loop to

Example: For iterating items in tuple using for loop.

>>> tuple=(10,20,30)
»>>> for 1 in tuple:
print(i)

Output:

10

20

30

>>>

use two enter to get the output

Wnﬂd-in Functions and Methods of Tuple

« Following table built-in tuple functions in Python programming.
sr. No. | Function Description [Example
i len(tuple) Gives the total length of the | >>> tupl
tuple. (1552343)
»>> len(tupl)
3
2. max(tuple) Returns item from the tuple | >>> tupl
with max value. 1,2, 3)
»>> max(tupl)
3
3. min(tuple) Returns item from the tuple | >>> tupl
withminvalue. (102 3)
>>> min(tupl)
1

PO A B
It zips elements from two tuples

»>> tupl=(1,2,3)

»>> tup2=('A','B",'C")

>3> tup3=zip(tupl,tup2)

»>> list(tup3)

[(1, 'A"), (2, 'B"), (3, 'C")]

»>> tuplel = (1, 2, 3, 4, 5)
»>»> listl = list (tuplel)
»»> listl

[1,2,3,4,5]

4. le1, tuple2)
ke : into a list of tuples.
P —— __--_——--__'-‘_—.-_—__—_ -
5. | tuple(seq) Converts a list into tuple.
ST S ——

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

————————

Data Structurg,

|
" Py,

et

% 3.20 - n
[—————'—T""“——-_-;;mmetr'ic_differcncn(-,,.. .
6. mﬁ” = new set with | set
i () Returns a
i the Wmmetrii
differences of two ©
T R more sets tric_differen _1‘_;.' :
7 mference_ubdate(} Modify this set with th?‘ Re SOPdate(s ey)
symmetric difference o
[P =— this set and other set -
S m Determines whether or set.isdisjoint(set)
not two sets have any
_— elements in common e
9. issubset() Determines whether one set.issubset(set)
set is a subset of the
T T e S other =i
10. iSSUPerset() Determines whether one | set.issuperset(set)
set is a superset of the
= A other
L add(item) It adds an item to the set. | set.add(set) e
It has no effect if the
item is already present in
* | discard(item) It removes the specified | set.discard(set)
Rl = e item from the set.
. remove (item) Remove an element from | set.remove(set) S
a set; it must be a
member. If the element
is not a member, raise a
12 KeyError.
A Pop() Remove and return an set,pop(set) -
arbitrary set element
that is the last element of
the set. Raises KeyError
e if the set is :
, update() Updates the set with the 1
union of itself apq| . Poore(set) |
Bl others.
. t-in functions like all(), any(), enumerat len
used with set to perform different tasks. Consiteo&er 32; Am:?g' {t.lisn 0, sorted(), sum() etc. are commonly
= Following table lists built-in functions for set: +1,6,7}.
e e
2. all (A) True
3 any (A) True
4. len(A)
___,-—-""
5. max(A)
_________,_..-‘
6. min(A)
_————"""!.
2 sorted(A)
36,7 _—
sum(A)
_—-"-/—‘

.Scanned with CamScanner

Scanned with CamScanner

Data Structurg, In

B

ﬂ-

M. Dictionap, ..

Prggrammir_}g with ‘Python' known as an empty dictionary “TY ite
4 en is

* A pair of curly braces with no values in betwe

; Beifagt ! . jctionary are unique, Dic:i,;__,.ap
are accessed by keys, not by their positics (:;d;: 1 the keys in t.hedi.iég;nar;y as and when I'equjrel_,_i Y
* The values in a dictionary can be duplicat r update the items in k up a word in a pap,,
are changeable (mutable). We can change 0 E way that we can [oodeﬁnitjon is its correSpg;;'fﬁf
The key can be looked up in muc.h the Samr d is the ' key' and the “Hing
dictionary to access its definition i.e., the wo S
‘value', : ther dictionary.
A 1n ano
Dictionaries can pe nested i.e. a dictionary can conta
Creating Dictionary values in a way that allows the,
* A dictionary can be useq to store a collection of data dex to identify a data value, each Item iy .
individually referenced. However, rather than using an in : :
dictionary is stored as a key value pair.) ign the pair of key:values to the dlctionar,
* The simplest method to create dictionary is to simply assign !
using operator (=).
There are two wa

)

s for creation of dictionary in python. : :value pairs in curly }, o

1. Wecan {c:reatzr a dictionary by placing_a comma-separatlej n%; R T Y Brace
{}. Each key is Separated from its associated value by a colon(:).

Example: For Creatin

g adictionary using { }.
>>> dicti={} # Empty dictionary
>>> dicta
{3 ‘
>>> dict2={1:"0r~ange", 2:"Mango", 3:"Banana"} # Dictionary with integer keys
>>> dict2

f1: ‘Orange', 2:
>>> dict3={"name"
>>> dict3

{"name’: ‘vijay', 1: [1e, 20]}
__—______—————-T— P . . . W Iy
2. Python provides a byj Id-in function dict() for creating a dictionary.
. 3 . 3 -
Example: Creating directory using dicty().
>>> dl=dict({1: "Orange",2: "Mango", 3: "Banana"})

>35> d2=dict([(1,“Red"),(2,"Yellow“),(3,“Green”)])
>>> d3=dict(one=1, two=

'Mango', 3: ‘Banana’}

PMvijay", 1:[1e,20]} # Dictionary with mixed keys

2, three=3)
>33 gl
{1: 'orange’, 2. 'Mango', 3: 'Banana’'})
2238 4D
{1: 'Red’, 2. "Yellow', 3. 'Green'}
>>> d3
{'one': 1, “HWe" s 25 "three': 3}

Accessing Values in 3 Dictio
* Wecan access the items of a dj
1. Referring to its key name,

Example: For accessin
>>> dictl={"'name" .
>>)> dictl['name']
‘vijay"
>>> dictl['adr']
Traceback (most recent cal} last).
File “<pyshe11#79>“, 1i
dicti[‘adr')
KeyError: ‘adp:
22>

‘vijay', ' age: :40)

Here, if we refer toa k

; : that is nog pep————d o
avoided by using get() Mmethog. the diﬂu%q. _ u — : emr_ga_n *

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

>

Programming with 'Python’ 3.28

Data Structures in Python
>>> a

Traceback (most recent call last):

File "<pyshell#9>", line 1, in <module>
a

NameError: name 'a' is not defined
+ operator (String Concatenation):
* The concatenation operator (+) is used to join two strings.
Example: For + operator in string.
>>> "Hello" + "Python"
'HelloPython'
>>> s1="Hello"
>>> s2="Python"
>>> s1+s2
'HelloPython' n
* Operator (String Multiplication):
« The multiplication (*) operator is used to concatenate the same string multiple times, it is called
repetition operator.
Example: for * operator in string.
>>> s1="Hello "
>>> s2=3%s1
>»> 52
'Hello Hello Hello '

Yy TENAxG
¥ sk o ok ok Ak ok

o a="**"

>»> a*s
PRk ok kR k!

>2>

String Traversal (Traversing String with for Loop and while Loop):

e Traversal is a process in which we access all the elements of the string one by one using for and while
loop.

Example: Traversing using for loop.
>>> s="Python Programming”
>>> for ch in s:

print(ch,end="")

Python Programming
»>>> for ch in range(®,len(s),2):
print(s[ch],end="")

Example: Traversing using while loop.
»>> s="Python Programming”
>>> index=0
>>> while index<len(s):
print(s[index],end="")
index=index+1
Output:
Python Programming

B

Scanned with CamScanner

Data Structures in Python

3.29

S immutable which means that we cannot change any element of a string. If we want t0
change an element of a string, we have to create a new string.

""'Z;n}le: For immutable string,
s»»str="Python"

y»ostr

‘python’

»»>str[@]="H"

Traceback (most recent call last):

File “<pyshell#33>", line 1, in <module>

str[@]="H"

TypeError: 'str’ object does not support item assignment
Here, when we try to change the 0™ index of string to a character “H", but the python interpreter
generates an error. The solution to this problem is to generate a new string rather than change the
old string.
Example:

>»»>str="Python”

»>> strl="H'+str[1:]

»»> strl

'Hython'
» Consider the following two similar strings:

Stri1="Python”
Str2="Python”
Here, Strl and Str2 have the same content. Thus python uses one object for each string which has the
same content. Both Str1 and St2 refers to the same string object, whereas Strl and Str2 have the

same ID number.

Example:
»>> Stri="Python"
>»> Str2="Python"
»»> id(Strl)
54058464
>>> id(Str2)
54058464

String Indices and Accessing String Elements:
* Strings are arrays of characters and elements of an array can be accessed using indexing. Indices

start with 0 from left side and -1 when starting from right side.
S1=“Hello Python”

Str1

Str2
Fig.3.7

>>> sl="Hello Python”
3> print(si[@])

H

23> print(si[11])

n

33> print(s1[-12])

print first character
print last character

print first character

= = = = — === P
Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Programming with 'Python’ 3.32 Data Structures In Python
9 \r ASCII Carriage return (CR) >>> print("Hello \r World!")
Hello World!
10. |\t ASCII Horizontal tab (TAB) | >>> print(“This is tav \t key”) =
This is tav key
11 \v ASCII Vertical tab (VT) >>> print("Hello \v World!"™) g
Hello
World!
12. \ooo ASCII Character with octal | >>> print("\118\145\154\154\157\46\127 |
value 000 \157\162\154\144\41")
Hello World!
13, \xhhh... ASCII Character with hex | >>> print("\de\xGS\ch\x5C\x6f\x20\xs7
value hh... \x6F\x7\x6c\x64\x21") |
Hello World! !
String Formatting Operator:

¢ The string in Python have a unique built
string formatting operator. This operator is unique to strings an

functions from C's printf() family.

Example:
>>> print(“"My name is %s and weight is %d kg!"%('vijay',6@))

My name is Vijay and weight is 60 kg!

-in operation, the % operator (modulo). This is also called the

d makes up for the pack of having

~ sr. No. Format Symbol Conversion
1 %C Character.
i %S string conversion via str() prior to formatting.
3 %i signed decimal integer.
4. %d signed decimal integer.
S %u unsigned decimal integer.
6. %0 octal integer.
f.f %X hexadecimal integer (lowercase letters).
8. %X hexadecimal integer (UPPERcase letters). 1
9. %e exponential notation (with lowercase 'e).]
10. %E exponential notation (with UPPERcase 'E’).
11 %f floating point real number.
12. %g the shorter of %f and %e.
13 %G the shorter of %f and %E.
String Formatting Functions:
» Python includes the following built-in functions to manipulate strings.
’ '} e v B e 4

1 capitalize()

Makes the first letter of the | >>> si="python proéramir;g'

string capital.

>>> sl.capitalize() "
'Python programming' o=

5. center(width,
fillchar)

Returns a space padded string | >>> s1="python programming”
with the original string centered | 55> print(si.center(38,'*")) ,f
to a total width columns.

t*tt#tpython pr‘osr.mngt EX T 2 __—.

Scanned with CamScanner

4

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

(4

Python Functions,
Modules and Package

Chapter Outcomes...

®] Use the Python standard functions for the

giving problem.
[

Develop relevant user defined functions for the given problem using the Python code.
Write Python module for the given problem.

Write Python package for the given problem.

CIC

Learning Objectives...

To learn Basic Concepts of Functions

To study use of Python Built-in Functions

To understand User Defined Functions with its Definition, Calling, Arguments Passing etc.

To study Scope of Variables like Global and Local

To learn Module Concept with Writing and Importing Modules

To study Python Built-in Modules like Numeric, Mathematical, Functional Programming Module
To learn Python Packages with its Basic Concepts and User Defined Packages

(w] [w]

(w] ®] [w] [w]

X} mrroODUCTION

Functions, modules and packages are all constructs in Python programming that promote code
modularization. The modularization (modular programming) refers to the process of breaking a
large programming task into separate, smaller, more manage:able subtasks or modules.
A function is a block of organized, reusabl; c?de that is used to perform a single, related
i ion. on has excellent support for functions.
:C;ﬁ::;gsri;ﬁ)%epgg;ined as the organized block of reugable code which can be called whenever
required. A function is a piece of code that performs a particular task. | w
A function is a block of code which only runs when it is called. Python gives us many built-in
functions like print() but we can also create our own functlons ca_lled as user-defined functions. :
A module in Python programming allows us to logically organize the- python code. A module is a
single source code file. The module in Python have the .py file extension. The name of the module
Sy na?xﬁf i;];eb{:eﬂz‘efmed as a python program file which contains a python code including
J;thyg:zo?urr?c(:ions class, or variables. In other words, we can say that our Python code file saved with
the extansion (py) ip treated g3 the mockls: u o0 Su), o directory structure of modules, For
In Python, packages allow us to create a hierarchical file directory structure of m :

‘mod1 stands for a module mod1, in the package mymodule.
ixample, mYCI:::;ils ?Coouection of modules which have a common purpose. In short, modules are
Python pa

grouped together to forms packages.
[4.1]

Scanned with CamScanner

Programming with 'Python’ ~ el k R ——
NCTIONS — m that performs 4,
2 st or pyrHON BUILT-IN FUNCT act like a prog”

ts that
¢ tatemen
Functions are the self-contained block of s

re always
task. jons that 3-' :
The Python interpreter has a number of fun:;'{rinto function prints

are called built-in functions. For example, : o -ific tasks. Some of these funes;,..

fﬂe . 2 Vil
output device (screen) or to the text S“e?: used to perform S © 4 type conversion functions 5,
Python built-in (library) functions can bé typ 1 ¢

; : d some are
comes in category of mathematical functions an
on

available for use. These fy,,
the given object to the stang..

Type Data Conversion Functions the built-in types. To convert bey,.

jons between
Sometimes it's necessary to perform conver.'szons | ' s -
types we simply use the type name as a function. ied to perform special kinds of conversions. 4| of
In addition, several built-in functions are suppli he converted value.
these functions return a new object representmgt.e convert one data type to another, Dat;
Python defines type conversion functions to directly

conversion in Python can happen in following two ways: e explicitly, and/or
1. Either we tell the compiler to convert a data type to some other type €xp

2. The compiler understands this by itself and does it for us.

Python Implicit Data Type Conversion: : ilation or durine
Implicit conversion is when data type conversion takes place either during compilat during

run time and is handled directly by Python.

Example: For implicit data type conversion.
>>> a=10
>>> b=25.34
>>> sum=a+b
>>> print sum
35.34
>>>

In the above example, an int value a is added to
converted to a float value sum without having
conversion.

In implicit data conversion the lowest priority data type always get converted to the highest priority
data type that is available in the source code.]
Python Explicit Data Type Conversion:
Explicit conversion also known as type castin:

float value b, and the result is automat_izalf;;
to tell the compiler. This is the implicit data

esirable :
Python, this can be accomplished very easily by making ust: convert one datg type into another. I

The type conversion functions result into a new object re:f buﬂt.-lntypeconversion functions.

data type conversion functions with their respective dﬁm-pm € the converted value. 4 list of

1. int(x [,base]) Converts x to :

S 8iven in following table.

base specifies the pr 5 xaint(-neaa,base:z)—lz

1234* ,base=8)=668
20 |engCx ibase]) | Conveitb g 8

is a Su'ing. x::int('

= _\
mteg.er, base Specifies the X‘lﬁng('IZB’base_g)_—.83L

base if x is a strip = | x=long(«
: b o e=16)=
3. float(x) g sbase=16)=171L

e

s '1°a'¢('123.45')=123.45

contd

Scanned with CamScanner

%m 'mhm‘

43

Python Functions, Modules and Packages

xscomplex(1,2) = (1+23)

» The format() function formats a specified value i

- Syntax: format(value, format)

iS4 complex(real[,imag]) Creates a complex number.
e 'S str(x) Converts object x to a string | x=str(10) = ‘10’
representation.
6. repr(x) Converts object x to an | x=repr(3) = 3
expression string.
mpm———
" eval(str) Evaluates a string and | x=eval('1+2') = 3
returns an object.
L] L] L] L] L]
— 8 | tuple(s) Converts s to a tuple. x=tuple('123') = ('1', '2', '3")
. x=tuple([123]) = (123,)
' list(s) Converts s to a list. x=list('123') = ['1', ‘2, '3']
x=list(['12'] = ['12"]
10. | set(s) Converts s to a set. x=set('Python")
e {ny-, |t|J lol" 'P', 'n., Ohl}
11 dict(d) Creates a dictionary. d dict={'id':'11", 'name':'vijay'}
must be a sequence of (key, | print(dict)
: value) tuples. =('id': '11', ‘name': ‘vijay'}
s 12, chr(x) Converts an integer to a | x=chr(65) = ‘A’
character.
13. unichr(x) Converts an integer to a | x=unichr(65) =u’A’
| Unicode character.
[14. | ord(x) Converts a single character | x=ord('A')= 65
s to its integer value.
VTR hex(x) Converts an integer to a | x=hex(12) = @xc
: hexadecimal string.
16. | oct(x) Converts an integer to an | x=oct(8) = @01@
octal string.
atting Numbers and Strings:

nto a specified format.

Example: For string and number formation

>>> x=12.345
>>> format(x,".2f")

L)

$12.35"
35>
ter Values: _ 3
i A L @“‘ -]
=1 o s the result- (;nrithin the available | »>> x=10.23456
< Left align >>> format(x, "<10.2f")

ace).
P) '10.23 2
- s the result (within the available | >>>x=10.23456
o # mgl‘;fhgns >>> format(x,">10.2f")
sp L] 10.23I
— : the result (within the | »>>x=10.23456
| ' :::i::\!l;le::hpﬁ)- »»> format(x,"*10.2f")
v oae.23 *
-

Scanned with CamScanner

Scanned with CamScanner

4.5

tions, Modules and Packages

Python Functions, MOGUIE= = = — ———

M“Mlth 'Python’

Built-In Mathematical Functions

punction can be described as a piece of code that may
or may not take some value(s) as input, process it, and
then finally may or may not return any value as

output.

Input x

hon’s math module is used to solve problems
related to mathematical calculations. Some functions

are directly executed for maths functions we need to
import math module first.

In python, thelze are two types of pre-defined functions.
Built-In Functions (Mathematical):

are a part of the python core and are just built within the Python com
importing these modules/libraries in our code.

+ Following table shows some of in built mathematical functions:

These are the functions which doesn't require any external code file/

4
[j Function f: T’
%

Output f(x)
Fig. 4.1

Modules/ Library Files. These

piler hence there is no need of

@Hb Functions Description

Example

Returns smallest supplied

arguments.

t min() value among

>>> min(2@, 10, 30)

10

L

2. supplied

Returns largest value

arguments.

max () among

>>> max(20, 10, 30)

30

The pow() function returns the value of x to the
power of y (xy). If a third parameter is present, it
returns x to the power of y, modulus z.

pow()

>>> pow(2,3)

>>> pow(2,3,2)

The round() function returns a floating point
number that is a rounded version of the
specified number, with the specified number of
decimals. The default number of decimals is O,
meaning that the function will return the

nearest integer.

round()

>>> round(18.2345)
16
>>>
6

>>>

5.77

round(5.76543)

round(5.76543,2)

Absolute function, also known as Modulus
(not to be confused with Modulo), returns the
non-negative value of the argument value.

abs()

>>> abs(-5)
5
>>> abs(5)
5

Built-In Functions (Math Module):
The second type of functions require some
using these external files in our co

our code and use the functions which are already written in that file.

Math Module

external files(modules) in order to be used. The process of
de is called importing. So all we have to do is import the file into

Following table shows some of in built mathematical functions of
o it | Description

1

b e e = P
e

This function returns the smallest integral
value greater than the number. If number is

already integer, same number is returned.

ceil()

>>> math.ceil(2.3)
3

This function returns the greatest integral

fl . :
il value smaller than the number. If number is

>>> math.floor(2.3)
2

already integer, same number is returned.

Scanned with CamScanner

ions, Pac
!_. P with ‘Python’ 46 Python Functions, Modules and Packages
i returns the cosine of value | >>> math.cos(3)
‘ 3. | cos() zzie;‘;zc:gzmem. The value passed in this | -8.9899924956884454
funcion shoudbein radians PTG
>>>math.cos(8)
1.0 o]
2. | cosh() Returns the hyperbolic cosine of x. ; ; ?eggégi ;:«;;:;;géhtﬂ)
5. | copysign() Return x with the sign of y. On a platform | >>> math.copysign(18,-12)
that supports signed zeros, copysign(1.0, -0.0) | -18.8
returns -1.0.
6. | exp() The method exp() returns returns exponential | >>> math.exp(1)
of x. 2.718281828459045
22>
7. | fabs() This function will return an absolute or | >>> math.fabs(18)
positive value. 10.0 |
>>> math.fabs(-28) I
20.0
8. | factorial() Returns the factorial of x. >>> math.factorial(5)
120
9. | fmod() This function returns x % y. >>> math.fmod(50,10)
8.0
>>> math.fmod(50,20)
10.0
10. | log(a,(Base)): | This function is used to compute the natural | >>> print(math.log(14))
logarithm (Base e) of a. 2.6398573296152584
11. | log2(a) This function is wused to compute | >>> rint(math.log2(14))
the logarithm base 2of a. Displays more | 3.887354922057604
accurate result than log(a,?2).
12. | logie(a) This function is wused to compute | >>> print(math.log1e(14))
the logarithm base 10of a, Displays more | 1.146128035678238
accurate result than log(a,10).
13. | sqrt() The method sqrt() returns the square root of x >>> math.sqrt(100)
forx> 0. 10.0
>>> math.sqrt(s)
2.236067977493979
14, | trunc() This function returns the truncated integerof | 55> math.trunc(3.354)
X;

anytime to perform that task,

* Python gives us many built-in functions like print(),
functions. These functions are called user-defined funct

* User defined function are the self-
requirements.

* A user-defined function is a block of related code st
related action or task. A key objective of the conce

ions,

modularity and enable reusability of code.

len() etc. but we can also create our own

contained block of statements Created by users according to their

atements that are organized to achieve a single
Pt of the user-defined function is to encourage

Scanned with CamScanner

' ing with 'Python’

mming - Python Functions, Modules and Packages
Function Definition

punction definition is a block where the statements inside the function body are written. Functions
allow us to define a reusable block of code that can be used repeatedly in a program.
Syntax:
def function-name(parametes):
"function_docstring"
function_statements
return [expression]

pefining Function:
. Function blocks begin with the keyword def followed by the function name and parentheses ().

+ Any input parameters or arguments should be placed within these parentheses. e
parameters inside these parentheses.

« The first statement of a function can be an optional statement - the documentation string of the
function or docstring.

« The code block within every function starts with a colon: and is indented.

« The statement return [expression] exits a function, optionally passing back an expression to the
caller. A return statement with no arguments is the same as return None

« The basic syntax for a Python function definition is explained in Fig. 4.2.
Function name Arguments

An identifier by which the =---. .---» Contains a fist of values
function is called passed to the function
def name(arguments):
indentati statement
ndentation Function body
Function body must =---- Saement ----» This is executed each ime
be indented g the function is called
return value
Return value
*---» Ends function call and sends
data back to the program
Fig. 4.2

Function Calling

* The def statement only creates a function but does not call it. After the def has run, we can call (run)
the function by adding parentheses after the function's name.

Example: For calling a function.
>>> def square(x): # function definition

return x*x

»>> square(4) # function call

16
N 55>
Concept of Actual and Formal Parameters:
1 Actual Parameters:
all are called actual parameters. These are the actual values

* The parameters used in the function ¢ x
thatpare gl:s:: d to the function. The actual parameters may be in the form of constant values or

variables. : '
* The data types of actual parameters must match with the corresponding data types of formal

parameters (variables) in the function definition.

i i function call
ey areused in the U7 the function definition through the function call

i al values that are passed to
(i) They are actu alues or variable names (such as local or global).

(iii) They can be constant V;

Scanned with CamScanner

4.8 Python Functions, Modules and Packages

Programming with 'Python’

2. Formal Parameters: header of function definition are called formal parameters of the

ers used in the - r
i Tftll:cgiﬁ?}?:se parameters are used to receive values from the calling function.
(i) Theyareused inthe function header.

i . h
i) They are used to receive the valuest asst .
gi)i) Thg are treated as local variables of a function in which they are us

Example: For actual and formal parameters.
>>> def cube(x): # formal parameters

return x*x*x

at are passed to the function through function call.
ed in the function header.

s>> result = cube(7) # actual parameters
>>> print(result)
Call by object reference % ° ‘
« Most programming languages have a formal mechanism for determining if a parameter receives a
copy of the argument (call by value) or a reference to the argument (call by name or c:all. by
reference) but Python uses a mechanism, which is known as "Call-by-Object/Call by Object
Reference/Call by Sharing".
Example:
>>> def increment(n):
n=n+1
>>> a=3
>>> increment(3)
[>>> print(a)
! 3
¢ When we pass a to increment (n), the function has the local variable n referred to the same object:

3

AN

* When control comes to n =n+1 as integer is immutable, by definition we are not able to modify the
[object’s value to 4 in place: we must create a new object with the value 4. We may visualize it like
below:

4

i

» All this time, the variable a continues to refer to the o't;ject with the value 3, since we did not change
the reference:

3

-

* We canstill “modify” immutable objects by capturing the return of the function.
»>>> def increment(n):
n=n+1
return n

>>> a=3

>>> a=increment(3)
>>> print(a)

4

Scanned with CamScanner

”

programming with 'Python’

The same increment() function
is a list which is mutable

»>> def increment(n);

n.append([a])

»> L=[1,2,3)

>>> increment(L)

>>> print(L)

[, 2, 3, [4])

generates a different result when we passing a mutable object: Here L

th - .
» Here, the statement L = [1,2,3) makes a variable L(box) that points towards the object [1,2,3].

o On the function being called, a new box n is created

B bl Both thet ; . The contents of n are the SAME as the contents
i ; : € Doxes contain the same object. That is, both the variables point to the same object in
memory. Hence, any change to the object pointed at by n will also be reflected by the object pointed

atby L.
D‘I

n

|
!

N ——
v f——
+ | —

Hence the output of the above program will be:
[1,2,3,4]

Advantages of User-Defined Functions:

1. User-defined functions help to decompose a large program into small segments which makes
program easy to understand, maintain and debug.

2. By using functions, we can avoid rewriting same logic/code again and again in a program.

3. We can call python functions any number of times in a program and from any place in a
program.

4. We can track a large python program easily when it is divided into multiple functions.

5. Reusability is the main achievement of Python functions.

6. Functions in Python reduces the overall size of the program.

Function Arguments

g

Many build in functions need arguments to be passed with them. Many build in functions require
two or more arguments. The value of the argument is always assigned to a variable known as

parameter. :
There are four types of arguments using which can be called are Required arguments, Keyword

arguments, Default arguments, and Variable- length arguments.

Required Arguments
Required arguments are the arguments passed to a function in correct positional order. Here, the
number of arguments in the function call should match exactly with the function definition.

e rtuge gl

Example: For required argument.
>»> def display(str):
“This print a string passed as argument”
print(str)
return

>»> display() # required argument

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

ling with Pt

mple: For void function.

*>> def show():
str="hello"
print(str)

>> show()

lello

>>

scope of a varlablé d e
ble/identifier.

ccessed onlyinside the

1ey are declared.

> ge=10" N
> def shou()' >

gram. This deper, g,

:, "_'SS a Pal‘tl(:hn‘a_

is referred to as its scope

Te in the code, locl

o2

lared outside any

'_-:__'.jf";. hthe entire

:S = ‘ her the enﬂre

Scanned with CamScanner

’. Ir.mmlng with 'PYlhOf‘l' e 4.13 PyThon FUF‘C"ED__’J,”_U‘?P_IG’ ?Eﬂ_’?“ik‘w_
A function is said to be a recursive if it calls itself, For example, lets say we have a function abc() and
1ntheb0d Ofabcothereis?EﬁH}Eﬁheach_ b i
gxample: For recursive function. RO - -

def fact(n):

if n == B!
return 1
else:

return n * fact(n-1)

print(fact(0))
print(fact(4))
print(fact(s))
Output:

1
24
720

. The factorial of 4 (denoted as 4!) is 1*2*3*4 = 24,

« Each function call multiples the number with the factorial of number 1 until the number is equal to

one.

fact(4) # 1st call with 4

4 * fact(3) # 2nd call with 3

4 * 3 * fact(2) # 3rd call with 2

4% 3L 5 * fact(l) # 4th call with 1

[TR | # return from 4th call as number=1
AT X D # return from 3rd call

4 *6 # return from 2nd call

24 # return from 1st call

+ Our recursion ends when the number reduces to 1. This is called the base condition. Every recursive
function must have a base condition that stops the recursion or else the function calls itself
infinitely.

Advantages of Recursion:
1. Recursive functions make the code look clean and elegant.
2. Acomplex task can be broken down into simpler sub-problems using recursion.
3. Sequence generation is easier with recursion than using some nested iteration.

Disadvantages of Recursion:
Sometimes the logic behind recursion is hard to follow through.

Recursive calls are expensive (inefficient) as they take up a lot of memory and time.

Recursive functions are hard to debug. _

It consumes more storage space because the recursive calls along with variables are stored on the
stack.

: T i ed and execution time.
5. Itis not more efficient in terms of spe

Example: Programs to convert U.S. dollars to Indian rupees.

def dol_rup(): “
dollars = float(input("Please enter dollars:"))

AW

rupees = dollars * 70
print("Dollars: “,dollars)
print("Rupees: " rupees)
def euro_rup():
euro= float(input("Please enter euro:™))
rupees = euro * 79.30
print("Euro: ",euro)
- print("Rupees: ",rupees)

Scanned with CamScanner

‘Programming with Python —

def menu():
print("1: Doller to Rupees™)

print("2: Euro to Rupees™)
print(™3: Exit™)
choice=int(input(“Enter your choice: "))
if choice==1:
dol_rup()
if choice==2:
euro_rup()
if choice==3:
print("Good bye!")
menu()
Qutput:
1: Doller to Rupees
2: Euro to Rupees
3: Exit
Enter your choice: 1
Please enter dollars:75
Dollars: 75.8
Rupees: 5258.8

"%¥ MODULES ERLS R
- - - - R

« Modules are primarily the (.py) files which contain Python programming code defining functions,

dlass, variables, etc. with a suffix .py appended in its file name. A file containing .py python code is

called 2 module.
e If we want to write a longer program, we can use
known as creating a script. As the program gets longer,
« We may also want to use a function that we have written in several programs without copying its

definition into each program.
« In Python we can put definitions in a file and use them ina script or in an interactive instance of the

interpreter. Such a file is called a module.

Writing Module

e Writing a module means simply creating a file which can contains python definitions and
statements. The file name is the module name with the extension .py. To include module in a file,
use import statement.

o Follow the following steps to create modules:

1. Create a first file as a python program with extension as .py. This is
can write a function which perform some task. 2 IR e Teners Ve
2. Create a second file in the same directory called main file wh i
top of the file and call the function. e enKduletothe
« Second file needs to be in the same directory so that Pyth i
e e x bR TG ry on knows where to find the module since

Example: For creating a module. Type the following code and save it as p1.p

def add(a, b): i
"This function adds two numbers and return the result"
result = a + b
return result

def sub(a, b):
“This function subtract two numbers and ret

u L1}

e subetepn rn the result
return result

pwnonFunononlLM°"U“"”"'*"*-u"

file where we can do editing, correction. This Is
we may want to split it into several files for

e —

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

ith 'Python’
; Eﬂ!"lﬂl“lw— y 417 Python Functions, Modules and packages
Aliasing Modules

it is possible to modify the names of modules and their functions within Python by using
thefas'keyvvord.
we can make alias because we have already used the same name for something else in the program
or we may want to shorten a longer name.
s tax: import module as another_name
: ple: Create a module to define two functions. One to print Fibonacci series and other for
finding whether the given number is palindrome or not.
step 1: Create anew file pl.py and write the following code in it and save it.
def add(a, b):

"This function adds two numbers and return the result”

result = a + b

return result

def sub(a, b):
“This function subtract two numbers and return the result”
result = a - b
return result

def mul(a, b):
"This function multiply two numbers and return the result"”
result = a * b
return result

def div(a, b):
"This function divide two numbers and return the result”
result =a / b
return result

Step 2: Create new file p2.py to include the module. Add the following code and save it.
import pl as m
print("Addition=" , m.add(1e,20))
print("Subtraction=“ ,m.sub(10,20))
print("Multiplication=" ,m.mul(10,20))
print("division=" ,m.div(10,28))

Step 3: Execute p2.py file.
Addition= 30
Subtraction= -10
Multiplication= 200
division= @.5

m Python Built in Modules

* Amodule is a collection of Python objects such as functions, classes, and so on. Python interpreter is

bundled with a standard library consisting of large number of built-in modules,
* Built-in modules are generally written in C and bundled with Python interpreter in precompiled

form. A built-in module may be a Python script (with .py extension) containing useful utilities.
* A module may contain one or more functions, classes, variables, constants, or any other Python

Tesources,

Numeric and Mathematical Modules:
This module provides numeric and math-related ful}ctions and data types. Following are the
modules which are classified as numeric and mathematical modules

() numbers (Numeric abstract base classes).
(i) math (Mathematical functions).
(iii) cmath (Mathematical functions

for complex numbers).

Scanned with CamScanner

Scanned with CamScanner

-—
honFuncuons.Modulesempac 5
S e Py, |

418
Programming with ‘Python’ RIS =

: : ithmetic)-

(iv) decimal (Decimal fixed point and floating point arith

(v) fractions (Rational numbers).

(vi) random (Generate pseudo-random nun?berS)-

(vii) statistics (Mathematical statistics functions) meric types. T

The numbers module defines an abstract hierarchy o8 nf]zjloa'cing'PC’int

contain various mathematical functions o f decimal numbers,

The decimal module supports exact representations O

arithmetic.

math and cmath Modules: .The math module o;

Python provides two mathematical modules namely math an(}'[:mazl1 :umbem and crnathglves S
tions for re modyje

access to hyperbolic, trigonometric, and lo-garithrmc fur;;x dinls Sy
allows us to work with mathematical functions for comp L

he math and cmath Mody,
and complex numbe\es
using arbitrary prﬁ‘ciﬁ;&'
|

Example 1: For math module.

>>> import math

>>> math.ceil(1.001)
2

>>> from math import *
>>> ceil(1.001)

2

>>> floor(1.001)

1

>>> factorial(5)
120

>>> trunc(1.115)

1

>>> sin(9e0)
0.8939966636005579
>>> cos(68)
-8.9524129804151563
>>> exp(5)
148.4131591025766
>>> log(16)
2.772588722239781
>>> log(16,2)

4.8

>>> log(16,10)
1.2041199826559246
>>> pow(144,0.5)
12.0

>>> sqrt(144)

12.0

>>>

The mathematical functions for complex numbers, — —————

Example 2: For cmath module, s e ity .

>»> from cmath import *
>>> €=2+2j

>>> exp(c)
(—3.974932320639359+6.71884969742825j)

>>> log(c,2)
(1.5996900999869082+1.1339999354567985j)

>>> sqrt(c)

(1.5537739740300374+0.64359425298558261)

Scanned with CamScanner

F ﬁ?l—”-@muh 'Python’
——— e . _Python Functions, Modules and Packages

pecimal Module:
pecimal numbers are just the flo
decimals from integers, strings, flo
A Decimal instance can represent
number of significant digits,
gxample : For decimal module,
»>> from decimal import Decima]
s3> Decimal(121)
Decimal('121')
»>>> Decimal(9.05)
Decimal('6.05@96908069099096277
»>> Decimal('@.15")
pecimal('@.15')
> Decimal('9.012')+Decimal('a.2')
Decimal('®@.212"')
»>> Decimal(?Z)/Decimal(?)
Decimal('10@. 28571428571428571428571429")
»>> Decimal(2).sqrt()
Decimal('1 .414213562373995948861688724)

mions Module:

o A fraFﬁon is a number which represents a whole number being divided into multiple parts. Python
fractions module allows us to manage fractions in our Python programs.

Example: For fractions module.

>»> import fractions

>»> for num, decimal in [(3, 2), (2, 5), (30, 4)]:
fract = fractions.Fraction(num, decimal)
print(fract)

ating-point numbers with fixed decimal points. We can create
ats, or tuples.

any number exactly, round up or down, and apply a limit to the

555756156289135105907917022705078125")

3/2
2/5
15/2
+ Itisalso possible to convert a decimal into a Fractional number. Let’s look at a code snippet:
>>> import fractions
»>> for deci in ['0.6', '2.5", '2.3', 'de-1']:
fract = fractions.Fraction(deci)
print(fract)

Output:
3/5
5/2
23/10
2/5

B 2y

4. Random Module: . :
* Sometimes we want the computer to pick a random number in a given range, pick a random

element ist etc.
from a list et ctions to perform these types of operations. This function is not

The rand rovides fun 5 - .
QWBSsiblz Erectmo;m:oie need to import random module and then we need to call this function using

— andom static object.
le: For random module.

>>> import random
>>> print(random.random())

Itgenerate arandomnumber in the range (6.90,1.9)

8.279 .
55> piiﬁﬁiiiiifiimnm, 20)) # Itgeneratearandom integer betweenx andy inclusive
B 13 e

'

Scanned with CamScanner

Scanned with CamScanner

| with 'Python'
miog WD phon —_— - 4.21 Python Functions, Modules and Packages

Rrogt

putput:
Cat
python
Java
Cas
python
Java
Cat
python
Java
3>
2. functools Module:
’ py;hon functools module provides us various tools which allows and encourages us to write reusable
code.
. hon functools partial() functions are used to replicate existing functions with some arguments
already passed in. It also creats new version of the function ina well-documented manner.
. Isill:ppose we have a function called multiplier which just multiplies two numbers. Its definition looks
e
def multiplier(x, y):
return x * y
+ Now, if we want to make some dedicated functions to double or triple a number then we will have to
define new functions as:
def multiplier(x, y):
return x * y
def doubleIt(x):
peturn multiplier(x, 2)
def tripleIt(x):
peturn multiplier(x, 3)
¢+ Butwhat happens when we need 1000 such functions? Here, we can use partial functions:
from functools import partial
def multiplier(x, y):
return x * y
double = partial(multiplier, y=2)
triple = partial(multiplier, y=3)
print('Double of 2 is {}'.format(double(S)))
print('Triple of 5 is {}'.format(triple(S)))
Output:
Double of 5 is 1@
Triple of 5 is 15
3. Operator Module:
at are equivalent to Python'’s operators. These functions

s functions th

llables must be stored, passed as arguments, or returned as function

The operator module supplie
are handy in cases where ca

results,
dule are listed in following table:

Functions supplied by the operator mo
1 ab; 7o abs(a) abs(a)
| 2. | add - | add(a,b) a+h
3, and_ and_(a, b) a&b
4, div div(a,b) a/b
. i contd.

Scanned with CamScanner

Ing With ‘Python'

d Namespace and S g
A namespace is a system toha‘ve .
be a variable or a method. Python its

* Python interpreter understands wk
depending upon the nameapam‘ “,
Name (which means name, an ur
Here, anamemjghtboofamy hon
where is trying to access a v eo

* A namespace in python is a ¢
to corresponding objects. ;

* Atany instant, different pythor
that there are no name collisions/y

* A scope refers to a mglanef&
using a namespace prefix,

* Scoping in Python revolves g
dictionaries containingtl‘lenfa*“ “q‘

Types of Namespaces:

* When a user creates a module, a
creates the local namespace, °
namespace encompasses local nam
1. Local Namespace; This na

namespace for every
2. Global Namespace: T me
the names from various i

used in a projoct.y i)
namespace for g

= 1 ! a==b ey

5.] eq _' i =

i
6. | gt e =
7 invert, inv . | ag=b _________H‘j
8, le a mcxh —
9, lshift = o ' :ﬁﬂ‘b‘ ______“_‘\:H]
10, 1t || T .’b _____-_hx“:._*
11| mod _|a* S
12, | mul : I | la lL!_-__b _______H_H:m
13, ne L R ~
4. | neg e P i
15, not_ " Y e ——
16. |or_ e = e —
17. pos _ . e
18. | repeat b g %
19. [rshift . 2
[20. xor_ ')

inPYthon An object mjgl
ef a Python dlctlonary

1g to point to in the code,
§ httle more informatjon.

_ ling related to scope)
ds upon the location from

ﬂly a mapping of names
tec - the isolation ensures

Iy ‘accessed, i.e. without

e

’.L‘ﬁ#paces are basically

eation of local functionsi

. Namespace and glob?

tion. Python creates this
the function returns

Scanned with CamScanner

. ﬂ" pnnie et Tathon —— 4.23 ____Python Functions, Modules and Packages

, Namespaces hel"p us uniquely identify all the names inside a program.According to Python's
documeﬂtafmf‘ a scope is a textual region of a Python program, where a namespace is directly
accessible.” Dlr?ctly ag:essnble means that when we are looking for an unqualified reference to a
name Python tries to find it in the namespace.

Scopes are det'ermlne.d statically, but actually, during runtime, they are used dynamically. This
means that by inspecting the source code, we can tell what the scope of an object is, but this does not
prevent the software from altering that du ring runtime.

python variable Scoping:

¢ scotge is the portion of the program from where a namespace can be accessed directly without any
prelix. :

« Namespaces are a logical way to organize variable names when a variable inside a function (a local
variable) _shares the Same name as a variable outside of the function (a global variable).

. Local van::-lbles contained within a function (either in the script or within an imported module) and
global variables can share a name as long as they do not share a namespace.

« Atany given moment, there are at least following three nested scopes:
1. Scope of the current function which has local names.
2. Scope of the module which has global names.
3. Outermost scope which has built-in names.

+ When a reference is made inside a function, the name is searched in the local namespace, then in the
global namespace and finally in the built-in namespace.

+ Ifthereisa function inside another function. a new scope is nested inside the local scope. Python has

two scopes.
1. Local Scope Variable: All those variables which are assigned inside a function known as local
scope Variable
2. falg'ib:ll Scope Variable: All those variables which are outside the function termed as global
able,
Example: For global scope and local scope.
global_var = 30 # global scope
def scope():
local_var = 40 # local scope

print(global_var)

print(local_var)
scope()
print(global_var)

OQutput:
30

'THON PACKAGES

s“Pe we have developed a very large application that includes man \

y modules. As the number of
Modules grows, it becomes difficult to keep track of them all as they h
functionality. y have similar names or

o Itis necessary to group and organize them by some mean which can be achieved by packages.

&&&3 Introduction

A package is a hierarchical file directory structure that defines a single on
" ‘Shvironment that consists of modules and subpacka ges and sub -subpackagesg andpsyc:‘:m. o
' ges allow for a hierarchical structuring of the module namespace using dot notation, Packages
A dat: Way of structuring many packages and modules which help in a well-organized hierarchy of
pa i S€ét, making the directories and modules easy to access.
; Package is a collection of Python modules, le, a package is a directory of Python modules
.'-%tammg an additional _ _init__.py file (For example: Phone/_ _init__.py).

o e, el e e ey, e ey
Scanned with CamScanner

Scanned with CamScanner

with 'Python’ 4,25 Python Functions, Modules and Packages

|t extends the capabilities of NumPy with further useful functions for minimization, regression,

Fourier- -transformation and many others.

o Both NumPy and SciPy are not part of a basic Python installation. They have to be installed after the
python installation. NumPy has to be installed before installing SciPy.

Math

., Some of the most popular mathematical functions are defined in the math module. These include
mgonome‘tnc functions, representation functions, logarithmic functions and angle conversion
functions.

. Two mathematical constants are also defined in math module.

« Pie(x) is 2 well-known mathematical constant, which is defined as the ratio of the circumference to

~ the diameter of a circle and its value is 3.141592653589793.

F—») import math
>>> math.pi
3.141592653589793

- >>>

f Another well-known mathematical constant defined in the math module is e, It is called Euler’s

number and it is a base of the natural logarithm. Its value is 2.718281828459045.

>>> import math
>>> math.e
2.718281828459045

"Numerical Python". It provides a high-performance multidimensional array object, and tools for
working with these arrays.
* An array is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive
integers and represented by a single variable. NumPy’s array class is called ndarray. It is also known

- by the alias array.
In NumPy arrays, the individual data items are called elements. All elements of an array should be of

~ the same type. Arrays can be made up of any number of dimensions.
. In NumPy, dimensions are called axes. Each dimension of an array has a length which is the total

number of elements in that direction.

The size of an array is the total number of elements contained in an array in all the dimension. The
size of NumPy arrays are fixed; once created it cannot be changed again.

Numpy arrays are great alternatives to Python Lists. Some of the key advantages of Numpy arrays
are that they are fast, easy to work with, and give users the opportunity to perform calculations

4.6 shows the axes (or dimensions) and lengths of two example arrays; (a) is a one-dimensional

array and (b) is a two-dimensional array.

3
N

Axis - 0
Length
o

o =2 N W »

(@) (6)
Fig. 4.6: Dimensions of NumPy Array

Scanned with CamScanner

) ‘Python’
 with yth 4.27 Python Functions, Modules and Packages

y Operations:

2Py, arrays allow a wide range of operations which can be performed on a particular array ora
ation of Arrays.

operations include some basic mathematical operation as well as Unary and Binary

ations. In case of +=, -=, *= operators, the existing array is modified.

. Unary Operators: Many unary operations are provided as a method of ndarray class. This
jncludes sum, min, max, etc. These functions can also be applied row-wise or column-wise by

setting an axis parameter.

), Binary Operators: These operations apply on array elementwise and a new array is created. You
can use all basic arithmetic operators like +, -, /,, etc. In case of +=, -=, = Operators, the existing

ay is modified.

le:; For basic array operators.

> arrl=np.array([1,2,3,4,5])

arr2=np.array([2,3,4,5,6])

~>>> print(arrl)

[12345]

5>> print("add 1 in each element:",arri+l)

' 1 in each element: [2 3 4 5 6]

print("subtract 1 from each element: ", arrl-1)

tract 1 from each element: [0 1 2 3 4]

>> print("multiply 1@ with each element in array: ",arrl*1e)

j1tiply 1@ with each element in array: [10 20 3@ 46 58]

print("sum of all array elements: " arrl.sum())

of all array elements: 15

print(“"array sum=:", arrl+arr2)

ay sum=: [3 5 7 9 11]

print(“Largest element in array: *,arrl.max())

st element in array: 5

f Array:

also perform reshape operation using
numpy operation. Reshape is when you
the number of rows and columns
es 2 new view to an object.

arr=np.array([[1,2,3],[4,5,611)
a=arr.reshape(3,2)

S, 2],
3, 4],
[s, 611)

i
asically extracting particular set of elements from an array. Consider an array

e array (1,2,3,4) is at index 0 and (3,4,5,6) isat index 1 of the python numpy array. We need a

ar element (say 3) out of a given array-

L. ¥
Scanned with CamScanner

_rogramming with '‘Python'

* Let us consider the below exarr
>»> import numpy as np
%3 a.np“rr’y((‘l'z"") 2 4 3 »
;” P ' | Ta) be as fo),,
* Now we need the 2" element "
import numpy as np
a=np.array([(1,2,3,4),
print(afe:,2])
3710
. Hm.colonroprennuanthc luding zer B
Array Manipulation Functions: 5 slation of elements in ndarray .,
* Several routines are available Py package 5 REe..

changing its dat,

_ 1 : L
_ -

' | (N
£ ’4

F L
. |
-
o !
|2
i v 3
b Bl

4

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

4,33 Python Functlons, Modules and Packages

PPEL] Pandas
. Pandas is an open-source Python Library providing high-performance data manipulation and
~ analysis tool using its powerful data structures.
» It is built on the Numpy package and its key data structure is called the DataFrame. DataFrames
allow you to store and manipulate tabular data in rows of observations and columns of variables.
Installing Pandas:
I pip install pandas
Data structures supported by Pandas:
'ﬂ' mdas deals with the following three data structures:

~ Data Structure Dimensions | Description
Series 3 1D labeled homogeneous array, size immutable.
Data Frames 2 General 2D labeled, size-mutable tabular structure

with potentially heterogeneously typed columns.

Panel 3 General 3D labeled, size-mutable array.

dimensional array which is Labelled and it is capable of holding array of any type like Integer, Float,

- String and Python Objects.

v For example, the following series is a collection of integers 10, 22, 30, 40,... The syntax is as follows:
| pandas Series(data, index, dtype, copy)

Ittakes four arguments:

data: It is the array that needs to be passed so as to convert it into a series. This can be Python

lists, NumPy Array or a Python Dictionary or Constants.

2. index: This holds the index values for each element passed in data. If it is not specified, default

~ isnumpy.arange(length_of_data).

' dtype: It is the datatype of the data passed in the method.

. copy: It takes a Boolean value specifying whether or not to copy the data. If not specified, default
 is false,

data is only mandatory argument of Series.

ple 1: Using Series data structure of Panda.

>>> import pandas as pd

?2> import numpy as np

'37”) numpy_arr = array([2, 4, 6, 8, 10, 20])

‘ >3 si = pd .Series(arr)

3> print(si)

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

ming with ‘Python’ 437 python Functions, Modules and Packages

 gpecified functions can now be imported in the interpreter session or another executable script.
sate test.py In the MyFkg folder and write following code:

MyPkg import power, average, SayHello

sayMello()

wpower(3,2)

p t("power(3,2) : ", x)

bte that functions power() and SayHello() are imported from the package and not from their
sective modules, as done earlier. The output of above script is:

y world

PO P(’,Z) 3 9
vice Questions

‘What is function?
‘What is module?
What is package?
e function. Write syntax to define function. Give example of function definition.
n a Python function return multiple values? If yes, how it works?
w function is defined and called in Python.
ain about void functions with suitable examples.
it is actual and formal parameter? Explain the difference along with example.
in about fruitful functions with suitable examples.
s the difference between local and global variable,
ain any five basic operations performed on string.
ain math module with its any five functions.
rentiate between match() and search() function. Explain with example.
lin type conversion of variable in Python.
s a function that takes single character and prints ‘character is vowel’ if it is vowel,
acter is not vowel’ otherwise.
n various string operations that can be performed using operators in Python,
in with an example, how + and * operators work with strings.
in str.find() function with suitable example.
efine is module? What are the advantages of using module?
dow to create a module and use it in a python program explain with an example.
plain various functions of math module.
nd explain any four built in string manipulation functions supported by Python.
in string slicing in Pyhton. Show with example,
plain the concept of namespaces with an example.
rite about the concept of scope of a variable in a function.

Scanned with CamScanner

asses and objects to solve the given problem.
ython code for data hiding for the given problem.

Python code using data abstraction for the given problem.
Python program using Inheritance for the given problem.

tives...
‘Object Oriented Programming Concepts in Python programming

ting Classes and Objects in Python
Method Overloading, Method Overriding, Data Hiding, Data Abstraction, Inheritance etc.

RHoN .
~an Object-Oriented Programming Language (00
ing (OOP) paradigm. It deals with declaring Python ¢

n of OOPs concepts.
‘programming offers OOP style programming and pr
programming uses the OOPs concepts that makes
‘that represents real-world entities.

1 also supports OOP concepts such as Inheritance, Method overriding, Data abstraction and
1ding.

terms in OOP/Terminology of OOP:

: Classes are defined by the user. The class provides the basic structure for an object. It
ists of data members and method members that are used by the instances, (objects) of the

PL) follows an Object-Oriented
lasses and objects which lays the

ovides an easy way to develop programs.
Python more powerful to help design a

ucture that is defined by its class. An object comprises
d instance variables) and methods. Class itself does

gh their objects. Object is an instance or
s the behavior (methods)

nce of a data str

lass variables an
lity is achieved throu
s the properties (variables) and use

ect: A unique insta
h data members (C
ing but the real functiona
; ence of the class. It take
defined in the class.
« Data Member: A variable defined in either a class or an object; it hold

 the class or object.
Instance Variable: A variable t
~ defines it.
Class Variable: A variable that is defined in the class and can be useé
Class,

(5.1]

s the data associated with

s only within the object that

hat is defined in a method; it scope 1

d by all the instances of that

Scanned with CamScanner

L., one Name
; ¢8 many forn |
1t signatures) being ..

- may refer to different function
-t g o

13. Data Abstraction: The basic straction Z a r::.mz,tf'"’—_
inecessary information stract Process of

EL o mer- Another ‘ﬂ_’a"vr .
j or example, Sendiﬂg SMs
ernal processing about 11,

 the implementation
shows only essential things t
where we type the text and send
message delivery.

* Python is an object oriented programm _' , A 105t eve ﬁ1 Python is an object, with

Creating Classes

its properties and methods. _
Object is simply a collection of data (va; at 1) that act on those datz.
A class is like an object constructor or a "bl ol
and behavior (variables and methods) tk

A class is a block of statements that c 1biny
into a group as a single unit and acts a blueprint for
To create a class, use the keyword ‘class’. Here's t}

Syntax: ; "
class ClassName: "&“M’ivﬁr n

L4 Ll - S
2 T il
% 7

‘Optional class documentation string’ L:n‘,":! PR e

list of python class variables : o ol

python class constructor s

python class method definitions ;

Following is an example of creation of an empty class:
class car:

pass

L ATNEE ¥

Inaclasswecandefinevariables, functions While wri D 0 5 25
atleast one argument that is called selfPara;wetfer Writing any function in class we hzv¢
The self parameter is a reference to the class itse].f o
class. It does not have to be named self, we can ;ﬁdﬂhwmmmmes that bel'o?f".:._ fir
parameter of any function in the class. Whatever we like, but jt has to be

Scanned with CamScanner

jith 'Python’
- 5,3

_ , Object Oriented P ;
s 3 class on interactive interpreter or in py file Programming in Python

rjive Interpreter:

student:

display(self): # defining method in class
print("Hello Python")

is an instance of a class that has some attributes and behavior.
be used to access the attributes of the class.
j_name=class_name()

_ dent()
play()
rogram with class and objects on interactive interpreter is given below:

ﬁﬁ? display(self): # defining method in class

print("Hello Python")
j # creating object of class

calling method of class using object

rogram with class and objects on interactive interpreter in .py file is given below:

f
ﬁtudent:

def display(self):

rint("Hello Python")

Class with get and put method.

Car:

of get(self, color, style):
self.color = color

: self.style = style

def put(self):

~ print(self.color)

" print(self.style)

‘Sedan’, 'Black’)

Scanned with CamScanner

Scanned with CamScanner

| ”\oq%mmm in Python

NCAPS ON AND DATA ABSTRACTION

ct access of methods and variables in a class with i :
e e 1th the help of encapsulation. It wil]

;:;:;q wzxsgﬁgeo;h state of a structured data object inside a class, Preventing
ction refers to providing only essential
kground details or implementation.
apsulation and abstraction
: through encapsulation,
is a process to bind data and fu

is a process in which the data insi
2 sensitive information.

information about the data to the outside world

(data hiding) are often used as synonyms. Data abstraction

nctions together into a single unit i.e., class while
de the class is the hidden from the outside world.

ng internal details and showing functionality is known as data abstraction.

encapsulation, declare the methods or variables as private in the class. The private
not be called by the object directly. It can be called only from within the class in which

1 prefix with double underscore is called
t is declared.

table shows the access modifiers for variables and methods:

private method which is accessible only with

~ Types : Description
| Public methods Accessible from anywhere i.e. inside the class in which they are

1 defined, in the sub class, in the same script file as well as outside the
iy script file.

: '@rivate methods Accessible only in their own class. Starts with two underscores.
g Public variables Accessible from anywhere,

| Private variables Accessible only in their own class or by a method if defined. Starts with
4h two underscores.

: For access modifiers with data abstraction.

Ss student:

— _a3=10 #private variable
b=20 #public variable

_ def _ _private_method(self): #private method
print("private method is called")

- def public_method(self): #public method

. print("public method is called")

print("a=",self._ _a) #can be accessible in same class

nt("a=",s1.__a) #generate error
("b=",s1.b)

_ _private_method() #generate error
blic_method()

MO11c method is called

Scanned with CamScanner

Scanned with CamScanner

'l
. 57
Object Criented Programming in Python

create a Cricle class intialize it wi :

_t:;Id'ethis class. and intialize it with radius. Make two methods getArea and
cle():

init_ _(self,radius):

sé _radius = radius

setArea(self):

rn 3.14*self.radius*self.radius

ge circumference(self):

rn self.radius*2*3.14

mppea", c.getArea())
.Jhcumference“,c.getcircumference())

structor:
nstructor is .simple constructor which does not accept any arguments.
e argument which is a reference to the instance being constructed.

: Display Hello message using default constructor.

It's definition

Student:
i _ _init_ _(self):
print("This is non parametrized constructor™)

;.}a% show(self,name):
print("Hello“,name)

student()
("Meenakshi")

is non parametrized constructor
lo Meenakshi
Counting the numb

er of objects of a class.

b dnit _(self):
Student.count=Student.count+1
udent()

=Student ()
t("The number of student objects",Student.count)

R Ao

number of student _321551;3:___2___________

terized Constructor:
tor with parameters is knownt as parameterlzed constructor.
a referenc

ameterized constructor take its first argument as a
ed known as self and the rest of the arguments are provided by the programmer:

: For parameterized constructor.

s Student:

_,faﬂf e inkr _(self,name): |
: print("This is parametrized constructor™)

self.name = name

e to the instance being

TR

Scanned with CamScanner

displays them

docstring isn't

Generally the

Scanned with CamScanner

) 'Python’ 5.9
:_ : Object Oriented Programming in Python

L] '

ﬁbdule e SMALN . doc e Thi
' 4 b s s is a sample class called Test.'
1,111:__ - ;fu.nctlo'n test._ _init_ _ at OxP13AC618>, '_ _dict_ _": <attr‘ibut;

objezts>}
overloading is the ability to define the method with the sam b i i
- BHG ind dats types. ame name but with a different
is ability one method can perform different tasks, depending on the number of arguments or
of the arguments given.
@verloading is a concept in which a method in a class performs operations according to the

eters passed to it.

- other languages we can write a program having two methods aith same name but with
t:number of arguments or order of arguments but in python if we will try to do the same we
t the following issue with method overloading in Python:

calculate area of rectangle

area(length, breadth):

calc = length * breadth

~ print calc

to calculate area of square

def area(size):

ealc = size * size

print calc

)

—_

es exactly 1 argument (2 given)

zrror: area() tak
it is not possible to define more than one method

does not support method overloading, i.e.,
same name in a class in Python.
ecause method arguments in python do not have
lled with an integer value, a string or a double as

a type. A method accepting one argument
shown in next example.

sS Demo:
def method(self, a):
print(a)

Scanned with CamScanner

Scanned with CamScanner

ces: all the data members and
 its specific implementation 10

Class B

l__bcrived Class

Fig. 5.1: Concept of Inheritance
(Single Inheritance)

):
",self.name)
ehicle): #derived class

print("Price=$",self.price)
tegory()

splay()

_price()

Maruti
e=$ 2000 .
le 2: Inheritance using constructor.

class Vehicle: #parent class

~ def _ _init_ _(self,name):

self.name=name

. def display(self):

! print("Name= ",self.name)

‘class Category(Vehicle): #derived class

~ def __init_ (self,name,price):
Vehicle, init_ (self,name) # passing
self.price=price

def disp_price(self):
print("Price=$ ",self.price)

Carl=Category("Maruti”,2000)

carl.display()

carl.disp_price()

€ar2=Category("BMW",5000)

car2.display()

'ﬁarz.disp_price()

k

data to base class constructor

13

Scanned with CamScanner

511 Object Orlented Programming In Python

nce
objects of one class procure the properties of objects of another class, Inheritance

gbility, which means that some of the new features can be added to the code while

g code. The mechanism of designing or constructing classes from other classes i:-

anm- . -

: 1scalled derived class or child class and the class from which this derived class has
is the base class or parent class.

nce, the child class acquires the properties and can access all the data members and
defined in the parent class. A child class can also provide its specific implementation to
f the parent class.

Base Class

b

Derived Class Class B

1ass B inheritin n 1
.1355 g property of class A Fig. 5.1: Concept of Inheritance
more properties of class B (Single Inheritance)

1: Inheritance without using constructor.
Vehicle: #parent class

ne="Maruti"

def display(self):

print(“Name= " self.name)
Category(Vehicle): #derived class
price=2000

def disp_price(self):
-print(“Price=$",self.price)
Category()

disp_price()

Maruti
$ 2000
. Inheritance using constructor.

Vehicle: #parent class
 def _ _init_ _(self,name):

- self.name=name

~def display(self):

' print("Name= " self.name)
Category(Vehicle): #derived
- def e,price):
- qgfﬁgatziz:_(jj;i:i?ié?i,naml) # passing data to base class constructor
: self.price=price

~ def disp_price(self):

! print("Price=$ ",self.price)

1=Category("Maruti”, 2000)

1.display()

disp_price()

“ategory("BMW",5000)

class

Scanned with CamScanner

Scanned with CamScanner

e ———— e —— |

5.13

Object Oriented Programming in Python

ass C inheriting property of both classA and B
add_more properties to class C

&Class 23] i Base Class sl . ClassA Class B

4 |)
|

jene ®)
Fig.5.3

: displayz(self) :
rint("Mother")

jisplay3(self):
print("son")

l = (ATl ce. ¢ I

than one derived classes aré created from a

it is called hierarchical inheritance.

g pri , we have a parent (base) class name

nd two child (derived) classes named Gmail and

For hierarchical inheritance.
Email:
send email(self, msg):

send | email(self, msg):

print("Sending “{} from Gmail" .format(msg))

il

Scanned with CamScanner

Scanned with CamScanner

5.15

tho —— Object Oriented Programming in Python
’ !i‘ T clm

jon, we do not inherit from the base class but establish Composie l
bemeen classes through the use of instance variables :

sT1CES to Other 0bjec't5' L
also reflects the relationships between parts, called a
s 'ps, Some OOP des‘ign

texts refer to composition as |

eating complex types by combining objects of other types. Component
that a class Composite can contain an object of another

nent.
ants composition as shown in Fig.5.5, Fig.55

e
poOsiie.

=

e number of Component

GenericClass:
e some attributes and methods

» ASpecificClass:
nce_variable of —Beneric_class=GenericClass
se this instance somewhere in the class
'_'uethod(Instance_variableqof —Beneric_class)
1§ program, we have three classes Email, Gmail ang yahoo. In email class we are referring
and using the concept of Composition.
for composition.
mail :
- send_email(self, msg):
Print(“"Sending “{}" from Gmail"
ahoo:
send_email(self, msg):
' Print("Sending “{}" from Yahoo" . format(msg))
3ss Email:
ider=Gmail()
Set_provider(self sprovider):
Self.provider=provider
er Send_email(self, msg):
__Self.provider. send_email(msg)
Nntl = Email()

*Send_emai](“Hello!")
: "set_.Pf‘ovider(Yahoo())

-Send__a'ail("Hello!")

'-g .format(msg))

Hellol" from Gmail
—8 Hello!" from vahoo

Scanned with CamScanner

s ject Oriented Programming |, ..
Programming with ‘Python’ 5.16 ____ Object OrlemtoC 7To@TAMMIng i1 1.,

R ——— INHERITED METH(.
r 'UIA IFRITAN ¥ y LINZ AT D‘)
20 VIR INHEEITANG (where object is an inst ;-
beginning with object, |,

* In Python, every ime we use an expression of the form object.attr,
class object), Python searches the namespace tree from bottom to top:
for the first attr it can find.

* This includes references to self attributes in the methiifllis' 1
override higher ones, inheritance forms the basis of specializationl. 4 : .
Program code in Fig. 5.6 create a tree of objects in memory to be searched by atmbt‘te Inheritan,

* Calling a class creates a new instance that remembers its class, running & clacsls B et
new class and superclasses are listed in parentheses in the class statement header.

* Each attribute reference triggers a new bottom - up tree search - even references to self attrip,
within a class's methods.

Because lower definitions in ¢}, .

| der atlr(selr.)

|
'

| Instance i

e e e mEEEEEEE e E e e E e E .= —— - ===

object.attr?

Fig. 5.6
e Fig. 5.6 summarizes the way namespace trees are constructed and populated with names. Generally
1. Instance attributes are generated by assignments to self attributes in methods.
2. Class attributes are created by statements (assignments) in class statements.
3. Superclass links are made by listing classes in parentheses in a class statement header.
e The net result is a tree of attribute namespaces that leads from an instance, to the class it was
generated from, to all the superclasses listed in the class header.

« Python searches upward in this tree, from instances to superclasses, each time we use qualificaticn
to fetch an attribute name from an instance object.

Specializing Inherited Methods:

e The tree-searching model of inheritance just described turns out to be a great way to specializé
systems. Because inheritance finds names in derived classes before it checks base classes, der ived
classes can replace default behavior by redefining their base classes’ attributes.

e In fact, we can build entire systems as hierarchies of classes, which are extended by adding ne¥
external derived classes rather than changing existing logic in-place. The idea of redefini’s
inherited names leads to a variety of specialization techniques,

« For instance, derived classes may replace inherited attributes completely, provide attributes that 2
base class expects to find, and extend base class methods by calling back to the base class o™ a7
overridden method. Here is an example that shows how extension works.

—__—E_x_al_l'lple : For specialized inherited methods.

class A: # parent class
"parent Class”

def display(self):
print ('This is base class.’)

Scanned with CamScanner

517
Object Oriented Programming In Python

derived class
srived class”
2 P lay(self):
X ,aﬂigplay(self)
(‘This is derived class.’)

instance of child
y () # child calls overridden method

class re;{laces base’s method function with its own specialized version, but within
ment, derived calls back to the version exported by base class to carry out the default

-l

ords, derived class.display() just extends base class.display() behavior, rather than
git completely.

is only one way to interface with a superclass.
1 defines multiple classes that illustratea variety of common techniques:

DIrogra
- Defines a method function Super
a2 delegate that expects an |
n in a subclass. [| |
ritor: Doesn't provide any inheritor | | Replacer Extender Provider
pames, so it gets everything — ' :
4 in Super. Fig.5.7
er: Overrides Super’s method with a version of its own.
de : Customizes Super’s method by © iding and calling back to run the default.
- . Implements the action method expected by Super’s delegate method.
2 feel for the various ways to customize a common superclass.
method(self):
print('in 5upep_,ethod‘) # Default behavior
E :lies:;i(;?;ﬂ ' # Expected to be definec-l
liﬁheritor(super)i # Inherit method verbatim

Replace method completely

Replacer(Super):
ibthod(self):
print(’in Replacer.
ass Extender(Super):

def method(self):

b, supw.nethod(self) .
: _miﬁhi"tw('ju(“s;"etre;der-ﬂethod) # Fill in 23 required method
: action(self):
print(’in provider.action’)
¢ klass in (Inheritor, Replacer, Extender): '

r (*\n" + klass._ _name_ _ * %0
klass().uethod()
print('\nProvider...')

provider()

i i

Scanned with CamScanner

method’) .
Extend method behavior

ing the

nt as usual,
Ince search of
cated in the

Scanned with CamScanner

erstand File, I/O and Exception

dy 1/0 Operations like Reading Input, Printing Output etc,
learn File Handling Concepts such as Opening,

L. Reading, Writing, Renaming,
ontents etc.

Deleting, Accessing

o
z;f

g

a collection of related data that acts as a container of storage as data permanently. The file
ng refers to a process in which a program processes and accesses data stored in files.
acomputer resource used for recording dataina computer storage device. The processing on
periormed using read/write operations performed by programs.

pports file handling and allows users to handle files i.e., to read and write files, along with
er file handling options, to operate on files.

programming provides modules with functions that enable us to manipulate text files and
files. Python allows us to create files, update their contents and also delete files.

file is a file that stores information in the term of a sequence of characters (textual
on), while a binary file stores data in the form of bits (0s and 1s) and used to store
on in the form of text, images, audios, videos etc.

TIONS (READING KEYBOARD INPUT, PRINTING TO SCREEN)

. ming language an interface plays a very important role. It takes data from the user
1d displays the output. . i

the essential operations performed in Python language is to PIOV&:;::ZP(’;"OZ?::S.

Mand output the data produced by the programtoa standard output T o eowided 1o (5

DUt generated is always dependent on the input values that '}.:::.‘]‘.‘le een p

"M, The input can be provided to the program statically and dynamicatly.

I [6.1]

———

Scanned with CamScanner

Scanned with CamScannerl

-
= 6.3

File VO Handling and Exception Handling

! at s_ymbols aw_ra.ilable in Python programming are:

Conversion
%C Character.
= 3 %S String conversion via str() prior to formatting, !
% Signed decimal integer. ¥
) %d Signed decimal integer.
3 b %u Unsigned decimal integer.
%0 Octal integer.
FoX Hexadecimal integer (lowercase letters).
: %X Hexadecimal integer (UPPERcase letters).
%e Exponential notation (with lowercase '¢).
%E Exponential notation (with UPPERcase 'E).
: %f Floating point real number.
A %8 The shorter of %f and %e.
- %G The shorter of %f and %E.
1g Keyboard Input):
vides two built-in functions to read a line of text from standard input, which by default
1 the keyboard.
yt): The input(prompt) function allows user input. It takes one argument. The syntax is
¢ (prompt)
\pt is a String, representing a default message before the input.
input (prompt) method.
t('Enter your name:')
Hello, ' +)

our name:vijay

vijay
function input() always evaluate the input provided by user and return same

is as follows:

nput () - |
ue is integer type then its return integer value. If input value is string type then its return

type data.

readmg input from keyboard.
put()

e(x)
L
put()
»
()
‘float'>
(input())

Scanned with CamScanner

mputer,
"_'5-’-.?’«)_-

Scanned with CamScaner

1istdir() # display file and folder

B TRect L take! 'include' ;
L v, Sl hastqpen)
| pz.;:y % Python.exe', 'Py’thon3 211' LICENSE't“',
Efy Scripts”, ‘share', ‘'te- : f
k)

of
current working director‘y

' ‘mypk ’ s
; Python37.q11: g‘, “ENS.txrj
test_py-J 3 pythonw_gxe.

4 Tools', 'vcruntimeme.dn-
des in a directory othe
f dusect ry r than PWD, we have to provide the full path
open(D.\\flles\\sample.txt") s w

ecify the mode while opening a file, In mode,

append ‘a’ to the file. We also specify if we w We specify whether we

; want to read 'r'
ant to open the file in text e

mode or binary

de of the file specifies the possible operations that can be
are opening a file.
fferent Modes of Opening File

+, and Java, a file in Python programming can be opened in various modes depending

u?:eée. For that, the programmer needs to specify the mode whether read 'r', write 'w". or
} m : ¥ ' '

this, two other modes exist, which specify to open the file in text mode or binary mode.
. mode returns strings while reading from the file. The default is reading in text mode.
ary mode returns bytes and this is the mode to be used when dealing with non-text files

performed on the file ie, what

in Python are given in following table:
T =

.;Z“'-”"'I' felv §1 0 ik ol AT on

e

Opens a file for reading only. The file pointer is placed at the beginning of the file.
This is the default mode.

Opens a file for reading only in binary format. The file pointer is placed at the
beginning of the file. This is the default mode.

Opens a file for both reading and writing. The file pointer placed at the beginning
of the file.

Opens a file for both reading and writing in binary format. The file
at the beginning of the file.

Opens a file for writing only. Overwrites the file if the file exists. If th
not exist, creates a new file for writing.

Opens a file for writing only in binary format. Overwrites the file if the

If the file does not exist, creates a new file for writing. —”’-"ﬁfm
. i rwrites the existing 1!
Opens a file for both writing and reading. i ading and writing.

exists. If the file does not exist, creates a new file fore contd. ...

pointer placed

e file does

file exists.

S

Scanned with CamScanner

Scanned with CamScanner

67 .

Flla /6 et Aoy

Lodid ’_ﬂu/.;, et

of the file: sample.txt

Data to File

ethod writes any string to an open file, In order to write into 2 file in Python, we ness 1,
v tc 'w', append 'a’ or exclusive creation 'x’ mode,
method writes the contents onto the file, It takes only one parameter and returns the
aracters writing to the file,
method is called by the file object onto which we want to write the dzta. We need 10 ve
‘the 'w’ mode as it will overwrite into the file if it already exists, All previous dztz sz

us e three methods to write to a file in Python namely, write(string) (for ten),
;lng) (for binary) and writelines (list),

Ing) method writes the contents of string to the file, returning the number of characters

 fawrite('This 1s a test\n')
For write(string) method.
en("sample. txt")
(“**content of filel**")
ead())

("sample. txt", "w")
e("first line\n")
Ate(“second 1ine\n")
dte("third 11ine\n")

"'fflaplo.txt','r')

-

Scanned with CamScanner

Scanned with CamScanner

th File /0 Handlin i

' por readline() method. T
‘- wle'm"’ “r‘“)

_peadline()) # read first line followed by\n

_readline(3))

peadline(5))

readline())

- readline())

Xt %)
.readlines())

ine\n', 'second line\n', 'third line\n']

e Position

nge the current file cursor (position) using the seek() method. Similarly, the tell() method
current position (in number of bytes) of file cursor/pointer.

file object’s position use f.seek(offset, reference_point). The position is computed from
fset to a reference point.

nce_point can be omitted and defaults to 0, using the beginning of the file as the reference
erence points are 0 (the beginning of the file and is default), 1 (the current position of
(the end of the file).

returns an integer giving the file object’s current position in the file represented as
[bytes from the beginning of the file when in binary mode and an opaque number when
de.

rds, the tell() is used to find the current position of the file pointer in the file while the
move the file pointer to the particular position.

r file position.

mple.txt","r")

f.read()) # print blank line

Scanned with CamScanner

S 6.9 -

Scanned with CamScanner

6.11

File 1/O Hand

i ——

ling and Exception Handling

Reads the content of a file line by line
and returns them as a list of strings,

lines :%.readlinez(} |
f.close()

e

f.writelines(lineg

It calls the readline() to read until
EOF. It returns a list of lines read

text =f.readllnes[25) |

from the file. If you pass <5i=e_hint>, :r‘int(text) \

then it reads lines equalling the ~close()

<size_hint> bytes,

offset[, from]) Sets the file's current position. position =f.seek(s,8); |

print(position) T
f.close() l

Returns the file’s current position. lines =f.read(10) |
#tell() ’
print(f.tell())
f.close()

Truncates the file’s size. If the
optional size argument is present, the
file is truncated to (at most) that size.

f.truncate(19)
f.close()

It writes a string to the file. And it
doesn’t return any value.

line ='Welcome Geeks\n'
£.urite(line)
f.close()

Writes a sequence of strings to the
file. The sequence is possibly an
iterable object producing strings,
typically a list of strings.

lines =f.readlines()
#writelines()

£ .writelines(lines)
f.close()

=

file object methods.
f sample.txtll,ilw+")

.:ead ()

ile no:",f.fileno())

Is connected to tty-like device:

ected to tty-like device: False

ine one\nLine two\nLine three")

-readable:",f.readable())
Is writeable:",f.writable())

" f.isatty())

-

Scanned with CamScanner

612 File VO Handling and Exception w,,,.

Handling Files through 0S Module:

* The 0S8 module of

Python allows us to perform Operating System (OS) dependent operations s, ;

making a folder, listing contents of a folder, know about a process, end a process etc.

* It has methods to view enviro
on and many more.

Directory related Standard

nment variables of the operating system on which Python is Workin,

Functions:

_-l-i.—_l-llu. 7§ 'E - e
o v 4
L | os.getcwd() Show current working import os
directory. os.getcwd() I
2. | os.path.getsize() Show file size in bytesof file | size =os.path.getsize(“sample.ty:
passed in parameter. i
<l 0s.path.isfile() print(os.path.isfile("sample.txt"
Is passed parameter a file.
0s.path.isdir() Is passed parameter a folder. print(os.path.isdir("sample.txt")
B2 0s.listdir() _ print("***Contents of Present
?etumsahst of all files and Working directory***\n
«?lders of present working, « 0s.1istdir())
directory.
6. os.listdir(path) Return a list containing the | print("***Contents of given
names of the entries in the directory***\n
directory given by path. ",0s.listdir(“testdir”))
7. - a = = txt
0s.rename(current,new) Rename a file, ?: rename(“sample.txt", "samplel.t
8. os.remove(file_name) | Delete a file, os.remove("sample.txt")
os.mkdir() Creates a single subdirectory. | os «mkdir(“testdir")
10. | os.chdir(path) Change the current working os.chdir("d:\1T")
directory to path.
Example: For handling files through 0S module. B
import os
os.getcwd()

print("***Contents of Present working directory***\p
print(os.path.isfile("sample.txt"))
print(os.path.isdir("sample.txt"))

i os.listdir())

***Contents of Present working directory**=
["BLLs"; ‘Doc'; “ete’, “filef titi. "include’,
"mypkg', 'NEWS.txt', 'pl.py', ‘'p2.py’, "python.exe’,
‘pythonw.exe', 'sample.txt', ‘Scripts’,
‘veruntimel4@.dll', '_ _pycache_ _']

‘Python3.d11", 'pythonB?-ﬂfl
ShaPetRNSERT N test.py’, 700l
True

False

Scanned with CamScanner

‘Lib*, ‘'libs', 'LICENSE.txT'

___-*

6.13 —
F
Ile 110 Handling ang Exception v
“N Handling

mir g a Fﬂe
in Python is done with the help of the rename() method. To rename fil
; £ 4 file

needs to be imported.
»() method takes two arguments, the current filename and the new filename

p_me_(cur'rent_file_name, new_file_name)
remaining files.

in Python,

contents of Present working directory***\n “,o0s.listdir())

o ("sample. txt", "samplel.txt")
+xcontents of Present working directory after rename***\n “,os.listdir()
ot b)]

s of Present working directory***

I 'pac‘, ‘etc', 'filei.txt’', ‘'include’', 'Lib’', 'libs', 'LICENSE.txt'
'NEWS.txt', ‘'pl.py', 'p2.py', 'python.exe’, 'python3.dll’, 'pythonn.aii"
exe', 'sample.txt', 'Scripts’, "share’, 'tcl', 'test.py’ '10015-’
146.d11"%, .. _pycache_ _'] , :
s of Present working directory after rename***

'‘Doc’, ‘'etc', ‘'filel.txt', *include’, 'Lib', ‘libs’, ‘LICENSE.txt’
.'NEHS.txt', ‘pl.py', 'P2.py’, ‘python.exe', 'python3.dll’, ‘python37.dll’,
xe', ‘'samplel.txt’', ‘Scripts', ‘'share’', ‘'tcl’, ‘test.py', 'Tools’,

el14e.d1l’, '_ _pycache_ _']

ing a File
e remove() method to delete files by supplying the name of the file to be deleted as the

existing file with the file name.
emove(file_n ame)
deleting files.

sssContents of Present working directory***\n “,0s.1istdir())
("sample.txt")

*¥New Contents of Present working directory***\n " os.listdir())

*EK

tents of Present working directory
hocy, etc’; ‘filel.txt', 'include’, *Lib*,
'python.exe’, 'python3.dll’,
‘tcl’, ‘test.py’,

"Yibs s " LICENSE.txt',
‘pythonB?.dlI',
‘Tools',

S D
', 'NEWS.txt', ‘'pl.py’, ‘p2.py’,
exe', ‘'sample.txt’, ‘Scripts’, ‘share’,
140.d11", '_ _pycache_ _']

ents of Present working directory*** .
. 'Doc', ‘etc', 'filel.txt’, ‘include', 'Lib’, *1ibs”, 'LICENSE.txt.,
'NEWS.txt', 'pl.py’, 'p2.py’, 'python.exe', 'pythona.dll', :py1':hon37.dﬁ',
', 'Scripts', ‘'share’, ‘tcl’, ‘test.py', 'Tools', +yeruntime140.d1l

in the method exists o

ud

Scanned with CamScanner

nethod in Python programming checks whether the file passed
s true if the file exist otherwise it returns false.

File /0 Handling and Er.ey.,.

Programming with ‘Python’ 6.14

WAl Directories

e If there are a large number of files to handle in the Python
different directories to make things more manageable. B o8 00

* A directory or folder is a collection of files and sub . 1
provides us with many useful methods to work with directories (and files a5 well).

& NY Create New Directory
* We can make a new directory using the mkdir() method.

* This method takes in the path of the new directory. If the full pREELAS H08 e
is created in the current working directory.
Syntax: os. mkdir(“newdir”)
Example:
>>> import os
>>> os.mkdir("testdir")

Get Current Directory
* We can get the present working directory using the getcwd() method. This method r==. -
current working directory in the form of a string.
Syntax: os.getcwd()
Example;
>>> import os
>>> os.getcwd()
'C:\\Users\\ Meenakshi \\AppData\\Local\\Programs\\Python\\Python37-32’

BRUKEY Changing Directory
* We can change the current working directory using the chdir() method.

* The new path that we want to change must be supplied as a string to this method. We czn o=
forward slash (/) or the backward slash (\) to separate path elements.

Syntax: os.chdir(“dirname”)

program, we can arrange the «.-,

Example:
>>> import os
>>> os.getcwd()
"C:\\Users\\Meenakshi\\AppData\\Local\\Programs\\Python\\Python37’
>>> 0s.chdir("d:\IT")
>>> 0s.getcwd()
AN\
>>>

i_6.2.10.4 List Directories and Files

« Al files and sub directories inside a directory can be known using the listdir() method.

e This method takes in a path and returns a list of sub directories and files in that path. If no pz—
specified, it returns from the current working directory.

Example:
53> o0s.listdir()
['DLLs', ‘Doc', ‘'include’, 'Lib', 'libs', 'LICENSE.txt', 'NEWS.txt', ‘pythor o'
‘python3.d11’, 'python37.d1l', 'pythonw.exe', 'Scripts', ‘tcl’, ‘test.py’, 1£57°-
'‘Tools', 'vcruntimel4®.dll’]

—

Scanned with CamScanner

!'1 ! Flla I/e
-) Handlin
g ﬂui £ /:,ﬁ:'ffu," e

al.:‘

ing pirectory

remove directories in the current directory,

poc’, rete’, veilel, txt', '"include’, 'Lib’, '1ibs’, LICEMSE.tzt', ‘mya
NEWS. txt's 'P1.PY' ‘p2.py', 'python.exe', 'pythond.dll’, -[,1,?,',,,;"?"

', rsample. txt', ‘Scrdpts’, 'share’, ‘tcl’', ‘test.py’, S

Bua1l', '~ -pycache_ L1

"mydir")

ir()

v, 'filel.txt', 'include’, "Lib', '14bs’, ‘LICENSE.txt', ‘mypkg

, 'etc
'pl.py's 'P2.pY's 'python.exe’, 'python3.dll’, 'python?7.41)
rsample.txt', ‘'Scripts’, '‘share', 'tcl', ‘test.py’, rasta’.

b]
i A _pycache_ |

/s not empty then we will get the “The directory is not empty” error, To remove 2
remove all the files inside it using os.remove() method,
h ir(uc:\\Users\\Meenakshi\\AppData\\Local\\Programs\\Pythoni_Pyrhgﬁ;rg

ir("mydirl")

(most recent call last):

yshell#32>“, line 1, in <module>

("mydirl")

WinError 145] The directory is not empty: 'mydirl’
ih(“C:\\Users\\Heenakshi\\AppData\\Local\\Programs\\Python\\?ythonzy-myaxrrg

-fhdir("C:\\Users\\Meenakshi\\AppData\\Local\\Programs\\Python\\PythonB?")

rndir("mydirl")

move a non-empty directory we can use the rmtree() method inside the shutil module.
wtil.rmtree(' test’) e
__,___._-——-—’_'""'—'_'__"_ i

qrnte a simple file and write some content in it.

ter 'x' for exit.");
input("Enter file name to cre

e == lxl:

ate and write content: ");

pen(filename, "w");
~-file,“,filename,'created success
nter sentences to write on the file: ");

fully!”);

R

Scanned with CamScanner

Scanned with CamScanner

6.17

ile h’O andli
F H ng and EICB tion Hang]in_g_

stes a Python program, there may be a few uncertain conditions which occur, known
g also referred to as bugs that are incorrect or inaccurate action that may cause the
the running of the program or may interrupt the execution of program.
wing three type of error occurs:
Time Errors: Occurs at the time of compilation, include due error occur to the violation
rules like missing of a colon (:).
Errors: Occurs during the runtime of a program, example, include error occur due to
t submitted to program by user.
1 Errors: Occurs due to wrong logic written in the program.
yrs at runtime are known as exception. Errors detected during execution of program.
es a feature (Exception handling) for handling any unreported errors in program.

eption occurs in the program, execution gets terminated. In such cases we get system
 error message.
ie exceptions, we can provide a meaningful message to the user about the problem
 gystem generated error message, which may not be understandable to the user.

n be either built-in exceptions or user defined exceptions.
ter or built-in functions can generate the built-in exceptions while user defined
re custom exceptions created by the user.

r exceptions.

a<5)
ror; invalid syntax

eback (most recent call last):

"'?’pyshell#b", line 1, in <module>

0

visionError: division by zero =
-l.l 'ion

on is also called as runtime error that can halt the execution of the program.

r
is an error that happens/occurs during execution of a program. Whenﬂtk‘::toirtrﬁe
n generate an exception that can be handled, which avoids the normal lo

. . error),
cted during execution are called exceptions. An exception is an event gusu:{ﬁi{:; of the
during the execution of a program that disrupts the normal flow of €X

T program'’s instructions). statement, try-finally

0N programming we can handle exceptions using try-except
It and raise statement.
Scanned with CamScanner i

T

Prot i mth 618 . Plle VO Hendiing and Exceptior i, ,
: : n .
¢ Following table lists all the standard exceptions available in Python programming languaye.
] E . ’
2 ArithmeticError Base class for all errors that occur for numﬂc calculation,
2. AssertionError Raised in case of faflure of the assert statement. ignm.
8. AttributeErrop Raised in case of failure of attribute reference or assignmer
4. Exception Base class for all exceptions., =
5. EOFError Raised when there is no input from either the raw inp..
input() function and the end of file is reached. -
6. EnvironmentErropr Base class for all exceptions that occur outside the pyi, .
environment,
7. FloatingPointError | Raised whena floating point calculation fails. o
8. ImportError Raised when an import statement fails.
9. IndexError Raised when an index is not found in a sequence. ==
10. | I0Error Raised when an input/ output operation fails, such as the or;.
statement or the open() function when trying to open 2 file «; .,
does not exist. -
11 IndentationErrop Raised when indentation is not specified properly. TN
12. KeyboardInterrupt Raised when the user interrupts program execution, usuzlly by
pressing Ctrl+c. -
13. KeyError Raised when the specified key is not found in the dictionary. o
14, LookupError Base class for all lookup errors. |
15; NameError Raised when an identifier is not found in the local or global
namespace,)
16. NotImplementedError | Raised when an abstract method that needs to be implemented in
an inherited class is not actually implemented.
17. OverflowError Raised when a calculation exceeds maximum limit for 2 numer.c
type. i
18. OSError Raised for operating system-related errors.
19 RuntimeError Raised when a generated error does not fall into any category.
20. StopIteration Raised when the next() method of an iterator does not point to any
object.
2L Systemexit Raised by the sys.exit() function,]
22, StandardError Base class for all built-in exceptions except Stoplteration and
SystemExit.
23, SyntaxError Raised when there is an errorin Python syntax. o
24, SystemError Raised when the interpreter finds an internal problem, but when
this error is encountered the Python interpreter does not exit.
25, SystemExit Raisetfl when Python interpreter is quit by using the sys.exit)
function. If not handled in the code, causes the interpreter to ex".
26. TypeError Raised when an operation or function is attempted that is invalid
for the specified data type. et
27. UnboundLocalError Raised when trying to access a local variable in a function o7
method but no value has been assigned to it. 1
28. | ValueError Raised when the built-in function for a dats type has the valid 177
of arguments, but the arguments have invalid values specified.
P ZeroDivisionError Raised when division or modulo by zerp takes place for all numeric
types.

Scanned with CamScanner

6.19

File /0 Handling ang Exception Handiir
#h1] -rdv

on Handling in Python Programming
s an event, whit;h occurs during the execution of a program that disen
: 'gram' s instructions. ' ‘
when a Python script encounters a situation that it cannot o
' is a Python object that represents an error.
j.f.ﬁm ction A calls function B whic!'l in turn calls function C and an
;ff it is not handled in C, the exception pas_ses .to Band then toA. w
wxception, it must either handle the exception immediately otherwi

on handling is a process that provides a way to handle exceptions that oce
n handling is done by writing exception handlers in the program.
~otion handlers are blocks that execute when some exception occurs at runtim
.plays same message that represents information about the exception,

exception in Python, the exception handler block needs to be written which consists of
nts that need to be executed according to raised exception. There are three blocks that
n the exception handling process, namely, try, except and finally.

k: A set of statements that may cause error during runtime are to be written in the try

Pts the normg]

€xception ocoyrs in '
hep a Python script ‘
S€ It terminateg and

ur at runtime,

e. Exception

Block: It is written to display the execution details to the user when certain exception
the program. The except block executed only when a certain type as exception occurs in
-ution of statements written in the try block.
lly Block: This is the last block written while writing, an exception handler in the program
| indicates the set of statements that are used to clean up the resources used by the

y-except

exceptions can be handled using a try statement. A try block consisting of one or more
is used by programmers to partition code that might be affected by an exception.
peration which can raise exception is placed inside the try clause and the code that
ception is written in except clause.

ted except blocks are used to handle any resulting exceptions thrown in the try block. If
tement within the try block throws an exception, control immediately shifts to the catch
no exceptions is thrown in the try block, the catch block is skipped.

an be one or more except blocks. Multiple except blocks with different exception names can
d together.

ept blocks are evaluated from top to bottom in the code, but only one except block is executed
exception that is thrown.

except block that specifies the exact exception name of the thrown exception is executed. If
lock specifies a matching exception name then an except block that does not have an
ame is selected, if one is present in the code.

Certain operations here
Exceptioni:
there is Exceptionl, then execute this block.
“~€Pt Exception2:
If there is Exception2, then execute this block.

'J',ao_"
‘Q!t--o.--.--oa---o

2 there is no exception then execute this blUCk/

Scanned with CamScanner

Scanned with CamScanner

6.21

- TTh——

o release external resources.

an exception or not.

(tinue or return statement.

File IO Ham:lllng and Elcep!ion Handling

it in Python can have an optional finally clause. This clause is executed always and is
nt written in finally clause will always be executed by the interpreter, whether the try

-always executed before leaving the try statement, whether an exception is occurred
‘exception is occurred in try block and has not been handled by an except block, it is
er the finally block has been executed.

se is also executed “on the way out” when any other clause of the try statement is left

= open("testfile", "w")

rite("This is my test file for exception handling!!")

oDivisionErmr-
t("Division by Zero")

t("Result is:",result)

("Execute finally clause")

Scanned with CamScanner

il

Scanned with CamScanner

e |

= 6.23
wﬂh Pyt File 10 Handling and Exception Handling
.clasS'ﬁgeSmallsxception(Error): X
wwnpaised when the input value is too small""" # empty class

pass
4 main program
while True:

try:
age = int(input(“Enter your age for election: "))

if age < 18!
paise AgeSmallException
else:
print("you are eligible for election")
break
except AgeSmallException:
print("This value is too small, try again!")
print()
Output:
Enter your age for election: 11
This value is too small, try again!
Enter your age for election: 15
This value is too small, try again!
Enter your age for election: 18
you are eligible for election

Example 2: Raise a user defined exception id password is incorrect.
class InvalidPassword(Exception):
pass
def verify password(pswd):
if str(pswd) != "abc":
raise InvalidPassword

else:
print('valid Password: '+str(pswd))
main program
verify_password("abc") # won't raise exception
verify password("xyz") # will raise exception
Output:
Valid Password: abc
Traceback (most recent call last):
File "c:\User-s\Meenakshi\AppData\Local\Programs\PythD“\PYt on.
<module>
verify password("xyz") # will raise exception
File “c:\Users\Meenakshi\AppData\Local\Programs\ff
verify password '
raise InvalidPassword
InvalidPassword

line 6, in

Scanned with CamScanner

thon progran
isless than 26
h the excepic

ata to be appencs

Scanned with CamScanner

