
THIRD YEAR DIPLOMA
ENGINEERING AND TECHNOLOGY
COMPUTER ENGINEERING GROUP
SEMESTER-VI

PROGRAMMING WITH
'PYTHON'

Scanned with CamScanner

Contents ...

1.0 Introduction

1.1 Features of Python

1.1.1 Running Python Scripts
1.1.2 Internal Working of Python
Python Building Blocks
1.2.1 Character Set
1.2.2

1.2.3

1.24

1.2.5

1.26

1.2.7

Scanned with CamScanner

25

3. Data Structures in Python

3.0

3.1

3.2

3.3

34

i

g fc and while Loops

ie Manipulation/LOOP
Control Statements

2.5.1 break Statement

25.2 continue Statement

25.3 pass Statement

« Practice Questions

Introduction

Lists

3.1.1 Creating a List

3.1.2 Accessing Values in List

3.1.3 Deleting Values in List

3.1.4 Updating Lists (Change or Add Elements to a List)

3.1.5 Basic List Operations (indexing and Slicing)

3.1.5.1 Indexing

3.15.2 List Slicing

3.1.6 Built-in Functions and Methods for List

Tuples

3.2.1 Creating Tuple

3.2.2 Accessing Values in Tuple

3.2.2 Deleting Tuples

3.2.4 Updating Tuple

3.2.5 Tuple Operations

3.2.6 Build-in Functions and Methods of Tuple

Sets

2.3.1 Accessing Values in Sets

3.3.2 Deleting Values in Set

3.3.3 Updating Set

3.3.4 Basic Set Operations

3.3.5 Built-in Functions and Methods for Set

Dictionaries

3.4.1 Creating Dictionary

34.2 Accessing Values in a Dictionary

34.3 Deleting Elements/items from Dictionary

3.4.4 Updating Dictionary

3.4.5 Basic Operations on Directory

34.6 Built-in Functions and Methods for Dictionary

* Practice Questions

4.0
41

as ot “

Introduction

Use of Python Built-In Functions

4.1.1 Type Data Conversion Functions

41,2 Built-in Mathematical Functions
Scanned with CamScanner

a

io

a

-

Scanned with CamScanner

Scanned with CamScanner

 Chapter Outcomes...

=) Identify the given variables, keywords and constants in Python.

(=| Use indentation, comments in the given program.

(=| Install the given Python IDE and editor.

(=) Develop the python program to display the given text.

 Learning Objectives...

=) To understand Basic Concepts in Python Programming

=| To learn Features and Environment for Python Programming

®) To know Python Programming Building Blocks like Keywords, Variables, Identifiers etc.

=) To learn Data Types in Python Programming

FRY wrropuction
Python is a high-level, interpreted, interactive and object-oriented programming language. Today,

python is the trendiest programming language programming.

There are several reasons for why Python programming language is the preferable choice of the

programmers/developers over other popular programming languages like C++, Java and so on.

Python is popular programming language because of it provides more reliability of code, clean

syntax of code, advanced language features, scalability of code, portability of code, support object

oriented programming, broad standard library, easy to learn and read, support GUI mode,

interactive, versatile and interpreted, interfaces to all major commercial databases, and so on.

History of Python Programming Language:

Python laid its foundation in the late 1980s. Python was developed by Guido Van Rossum at National

Research Institute for Mathematics and Computer Science in Netherlands in 1990.

Inspired by Monty Python's Flying Circus, a BBC comedy series, he named the language Python.

Python is derived from many other languages, including ABC, Modula-3, C, C++, Algol-68, SmallTalk,

and Unix shell and other scripting languages.

ABC programming language is said to be the predecessor of Python language which was capable of

Exception Handling and interfacing with Amoeba Operating System. Like Perl, Python source code is

now available under the GNU General Public License (GPL).

In February 1991, Guido Van Rossum published Python 0.9.0 (first release) to alt.sources. In addition

to exception handling, Python included classes, lists and strings.

In 1994, Python 1.0 was released with new features like lambda, map, filter, and reduce which

aligned it heavily in relation to functional programming.

[1.1]

Scanned with CamScanner

1.2 _Introduction and Syr
ng with 'P: hon’ ‘ mi 5 = 7 : rn oa

2.0 added new features like list comprehensions, garbage collection sys ie ; a

e Python 2. ic j
Unicode. g, Python 3.0 (also called “Py3K") was released. It was d 3, 200 : ra ns ° BP Decco of the language. In Python 3.0 the print statement has been 7
un

i function.
{ a |

ae, ai used in both industry and academia because of its simple, concise a
a

ort of libraries. F
esa is available for almost all operating systems such as Windows, Mac, Linux/Uni

can be downloading from http://www.python.org/downloads, ! ‘

Some common applications of Python Programming are listed below: f

1, Google's App Engine web development framework ne PyLe as an application la

2. Maya, a powerful integrated 3D modeling and animation system, provides a Python

API. Th

Linux Weekly News, published by using a web application written in Python programn

Google makes extensive use of Python in its Web Search Systems.

The popular YouTube video sharing service is largely written in Python programming.

The NSA (National Security Agency) uses Python programming for cryptography
intelligence analysis. ‘i

iRobot uses Python programming to develop commercial and military robotic devices.

The Raspberry Pi single-board computer promotes Python programming as its =

language. ja tm

9. Nextflix and Yelp have both documented the role of Python in their software infrastructu

10. Industrial Light and Magic, Pixar and others uses Python programming in the produc
animated movies. ; F ol

PEW FEATURES OF PYTHON tec a

Python's features include:

Easy to Learn and Use: : as

Python is easy to learn and use. It is developer-friendly and high level programn
Python has few keywords, simple structure, and a clearly defined syntax that r
understandable for beginners. iis
Python language is more expressive means that it is more understandable and
programmers. a
In Python programming programs are easy to write and execute as it omits some
poorly understandable and confusing features of other programming language su
Java.

- Interpreted Language: ;
Python is an interpreted language i.e., interpreter executes the code line by line ata ti debugging easy and thus suitable for beginners. There are excellent, straightforw: with python code, is interactive interpreter.
In python, we need not to learn a build system, IDE, special text editor, or anything else python. All we need only a command prompt and the interactive editor. r
Python provides a Python Shell (also known as Python Interactive Shell) which is 1

my
’ it.

D
N
R
 Ww

co

N

 i

 a |

Scanned with CamScanner

Programming with 'Python' 13

HB Commend Prompt - python

3. Interactive Mode;

ee "|

Fig. 1.1; Python Command Prompt

and debugging of code. Graphical User Interfaces (GUIs) can be developed using Python.

windows systems, such as Windows MFC, Macintosh and the X Window system of Unix.

editors:

Introduction and Syntax of Python Program

Python programming language has support for interactive mode, which allows interactive testing

Python supports GUI applications that can be created and ported to many system calls, libraries and

There are many free and commercial editors available for Python. Following table lists Python

Sr. No.

L
Editor Icon/Logo _
 ng IDLE IDLE is a popular Integrated Development Environ-

ment written in Python and it has been integrated with
the default language.
Mainly used by the beginner level developers who want
to practice on Python development.

=

 PyCharm PyCharm is one of the widely used Python IDE which
was created by Jet Brains.

With PyCharm, the developers can write a neat and
maintainable code. It helps to be more productive and
gives smart assistance to the developers.

It takes care of the routine tasks by saving time and
thereby increasing profit accordingly.

Spyder It was mainly developed for scientists and engineers to

provide a powerful scientific environment for Python.
It offers an advanced level of edit, debug, and data
exploration feature.

It is very extensible and has a good plugin system and
API.

SPYDER

PyDev PyDev is an outside plugin for Eclipse. It is basically an
IDE that is used for Python development.

It is linear in size. It mainly focuses on the refactoring
of python code, debugging in the graphical pattern,

analysis of code etc. It is a strong python inter-preter.

Jupyter
Notebook ba The Jupyter Notebook is a browser-based graphical

interface to the IPython shell.

Allows us to create and share documents that contain

live code, equations, visualizations and narrative text. (sam
jupyter

2

Environment) is an Integrated Development Environment (IDE) for Python.

we will get the following window (See Fig. 1.2).

Scanned with CamScanner

In this text book, IDLE is used for Python programming. IDLE (Integrated Development and Learning

To start IDLE interactive shell, search for the IDLE icon in the start menu and double click on it and

14

ming with ‘python’
Program

nly we can execute co one like in

IDLE shell not © ion of those files. —
, cae create .py files and se¢ execution of —___——
but a

[ip Python 3.7.3 Shel

File Edit Shell Debug

python 3.7.3 (v3.7,35€
er

as es rcopyright", "credits" or "license()" FOE MaRS

>>>
LS

f4ecéedl2, Mar 25 2019, 22:22:¢
| ,

Fig. 1.2: Python Shell

Free and Open Source:
ee i

python programming language is developed under an Os! approved o

freely available at official web address. The source code is also ae al

The Python software can be freely distributed and any one can use and

changes/modifications to it and use the pieces in new free programs

platform Independence/Cross Platform Language/Portable: rps

python can run on a wide variety of hardware platforms and has the sar ne |

python can run equally on different platforms such as Windows, Linux, U

we can say that Python is a portable language. *. >

Fig. 1.3 shows execution of Python code by interpreter.
i 5

Powe quad i

Interpreter —
be

 Source code

ly y oat ee a 7

Fig. 1.3: Execution of Python Code _ + .

Python source code goes through Compiler which compiles the source PPA:
byte code. : oa

Byte cored a lower level, platform independent, efficient and intern
source code. As soon as source code g artes Heads HEL
Machine). © BFls COR MEE TEL Te ier oad

The PYM is the runtime engine of Python; it’s uiwayy pélidniaaeei

component that truly runs é ‘ane 0

Object-Oriented Language:
A programming language that can mod
objects, and combines data and el

Scanned with CamScanner

Programming with ‘Python’

_ — | : im a

1.5 Introduction and Syntax of Python Program

Extensible:

Python programming implies that other languages such as C/C++ can be used to compile the code
and thus it can be used further in the python code.

python has a large and broad library and provides rich set of module and functions for rapid

application development.

Python languages bulk library is portable and cross platform compatible with Unix, Windows etc.

Limitations of Python:

1. Python is an interpreter based language. Therefore, it is bit slower than compiler based

languages.

2. Python is a high level language like C/C++/Java, it also uses many layers to communicate with

the operating system and the computer hardware.

3. Graphics intensive applications such as games make the program to run slower.

4. Due to the flexibility of the data types, Python's memory consumption is also high.

Structure of a Python Program:

Fig. 1.4 shows a typical program structure of Python programming.

Python programming programs are structured as a sequence of statements. A Python statement is

smallest program unit.

Statements are the instructions that are written in a program to perform a specific task. A Python

statement is a complete instruction executed by the Python interpreter.

By default, the Python interpreter executes all statements sequentially, but we can change order of

execution using control statements.

+ niet ul #Python Program Structure. Calculate Area and Circumference

of circle using class. # Documentation section

import math # import statement

radius=5 # global declaration Section

class Circle(): # class section

Optional ee, eee tad
def getCircumference(self):

return radius*2*math.pi

def showradius(): # sub Program section
print("Radius =",radius)

showradius() # Playground Section

Essential Bat “ai =",c.getArea()) print("“Circumference

=",c.getCircumference())

Output:

Radius = 5
Area = 78.53981633974483

Circumference = 31.41592653589793

Fig. 1.4: Typical Program Structure of Python Programming with Example

Program structure of Python programming contains following sections:

1. Documentation Section includes the comments that specify the purpose of the program.

A comments that is a non-executable statement which is ignored by the compiler while program

execution. Python comments are written anywhere in the program.

2. Import Section is used includes different built in or user defined modules.

Global Declaration Section is used to define the global variables for the programs.

4. Class Section describes the information about the user defined classes in the Python program.

A class is a collection of data members and member functions called method, that operate on

data members.

&

a es

Scanned with CamScanner

 Programming with ‘Python’

1.6

defined functions. The ha ram Section includes use s include 5. Sense that need to be executed when the function is called form, anywh ir -

6. Pay Ground Section is the main section of Python program and the 5

ea function calling.
—e sectio

| Running Python Scripts et ‘ ‘: “

. pel has two basic modes namely, normal and interactive. ‘hes {

+ The normal script mode is the mode where the scripted and finished .py files are a

interpreter. i: te

The interactive mode is a command line shell which gives immediate feedback —
while running previously fed statements in active memory. Mh

As new lines are fed into the interpreter, the fed program is evaluated both in part and in

Interactive Mode: MM ik

Interactive mode is used for quickly and conveniently running single line or blocks of code.
example using the python shell that comes with a basic python installation. ’
The “>>>” indicates that the shell is ready to accept interactive commands. For example, if v
to print the statement “Interactive Mode”, simply type the appropriate code and hit enter,

File Edit Shell Debug Options Window Help : cesta s bie p
Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.4900 32 bit (intel)) 3
en win32

Type "copyright", "credits" or "license()" for more information.
>>> print (‘Interactive Mode')
Interactive Mode

Script Mode:

In the standard Python shell we can go to “File” > “New File” (or just hit Ctrl + N) to pull u r
script to write the code. Then save the script with a “ .py” extension.
We can save it anywhere we want for now, though we may want to make a folder someon
the code as we test Python out. To run the script, either select “Run” > “Run Module” or p
We should see een like the following, (See ze 1.6 18) and 1.6 ot).

File Edit Formst Run Options Window “Help
[print ("Script Mode')

Scanned with CamScanner

Prograruniing with Eyiaian 1.7 Introduction and Syntax of Python Program

 File Edit Shell Oebug Options Window Help
Python 3.6.4 (v3.6.4:d4@eceb, Dec 19 2017, 06:04:45) (MSC v.1900 32 bat (I *
ntel)] on wing2
peg "copyright", “credits” or “license()" for more information.

“= RESTART: Ct\Users\acer\AppData\Local\Programs\Python\ Python36-32\test-p
¥ Te

Script Mode

>>> |

 Ee ne a ee

ne ote iné Cob4

Fig. 1.6 (b)

Internal Working of Python
Python is an object oriented programming language like C++ and Java. Python is called an
interpreted language means Python programs are executed by the interpreter.

e Python uses code modules that are interchangeable instead of a single long list of instructions that

was standard for functional programming languages.

¢ The standard implementation of python Python code
is called “CPython”. It is the default and I
widely used implementation of the
Python.

* When a programmer tries to run a
Python code as_ instructions in an
interactive manner in a Python shell,
then Python performs various

 User inputs 7 Pytho Virtual
a “Machine (vm) | ==

operations internally.

e All such internal operations can be ral
broken down into a series of steps as

shown in Fig. 1.7. ee

¢ The Python interpreter performs following tasks to execute a Python program:

1. The interpreter reads a Python expression or statement, also called the source code, and verifies

that it is well formed. In this step, as soon as the interpreter encounters such an error, it halts

translation with an error message.

2. Ifa Python expression is well formed, the interpreter then translates it to an equivalent form in a

low-level language called byte code. When the interpreter runs a script, it completely translates

it to byte code.

3. This byte code is next sent to another software component, called the Python Virtual Machine

(PVM), where it is executed. If another error occurs during this step, execution also halts with an

error message.

T ON BU r Oc _ Sia aha bdeagr. ieee ’ oe! ba a

* In order to write any Python program, we must be aware of its , available Keywordemmd

data types also have some knowledge of variables, constants, identifiers and so on. 4

* Keywords, identifiers, variables etc., are the basic building blocks of Python programming. Python

uses the character sets as the building block to form the basic program elements s
uch as variables, P

keywords, constants, etc. a }

Fy ae 7
Scanned with CamScanner

FE character Set
FEI chs cter set is a set of alphabets, letters, symbols and some special characters that are vane.

e e valid,

mming language. 7
ae Soa di e following character sets. These characters are submitted to the Python int e Pytho
they are interpreted or uniquely identified in various contexts, such as characters, identig, ‘ i

names or constants.

1. Lowercase English Letters: a to Z.

2. Uppercase English Letters: A to Xs

3. Punctuation and Symbols: "S$", "!", etc.

4. Whitespace Characters: An actual space (""), as well as a newline, carriage return, horis

tab, vertical tab, and a few others.

5. Non-Printable Characters: Characters such as backspace, "\b", that cannot be printed liters

the way that the letter A can be printed.

6. Delimiter: Delimiters are symbols that perform a special role in Python like grouping

punctuation and assignment. Following symbols and symbol combination uses as a delimiter j;
python: ;

Ns Peed ob. elt gk es ae -= *= /= %= “= &= |= “= dda cee

* A program in Python contains a sequence of instructions. Python breaks each statement int

sequence of lexical components/elements which are identify by the interpreter, known as tokens, _

* A token is a smallest unit of the program. Python contains various types of tokens, such as keyword

variables, operators, literals, identifiers etc.

'wawas identifiers

* A Python identifier is a name given to a function, class, variable, module or other objects that isu 2
in Python program.

« Allidentifiers must obey the following rules:

1. An identifier can be a combination of uppercase letters, lowercase letters, underscores, an
digits (0-9). Examples include, Name, myClass, Emp_Salary, var_1, _Address
print_hello_world.

2. Wecan use underscores to separate multiple words in the identifier. For example, Emp_Salary.

3. An identifier starts with a letter which can be alphabet (either lowercase or uppercase)
underscore (_).

4. Identifiers can be of any length.
5. Identifiers cannot start with digit and must not contain any space or tabs. Example inclu

2variable, 10ID.
6. Wecannot use Python keywords as identifiers.
7. Special characters such as %, @, and $ are not allowed within identifiers. Example inclu

) $Money, @salary.
i Python is a case-sensitive language and this behavior extends to identifiers. Thus, identifi ‘

and age are two distinct identifiers in Python.
F Example of valid identifiers includes: Circle_Area, EmpName, Student, Sum, Salary1@, PhoneNo. Example of invalid identifiers includes: ! count, 4marks, XLoan. ;

FEE] Keywords
* Python keywords key are are reserved words with that have special meaning and functions. The 7 a rds should a ith sPecific meaning in the Python programs. oe not be used as variable name, constant, function name, or

 Scanned with CamScanner

Programming with "Python" 19

¢ Following table lists keywords in Python programming:

Introduction and Syntax of Python Program

and as | assert break class continue

def del else elif except exec

false finally for from global if

import in is lambda none not

or | pass print raise return true

try | while with yield

5ya7e Variables

A variable is like a container that stores values that we can access or change. It is a way of pointing to
a memory location used by a program. We can use variables to instruct the computer to save or
retrieve data to and from this memory location.

A variable is a name given to a location in the computer's memory location, where the value can be

stored that can be used in the program.

When we create a variable, some space in the memory is reserved for that variable to store a data
value in it. The size of the memory reserved by the variable depends on the type of data it is going to

hold.

The variable is so called because its value may vary during the time of execution, but at a given
instance only one value can be stored in it.

Variable Declaration:

A variable is an identifier, that holds a value. In programming, we say that we assign a value toa
variable. Technically speaking, a variable is a reference to a computer memory, where the value is

stored.

Basic rules to declare variables in python programming language:

41. Variables in Python can be created from alphanumeric characters and underscore(_) character.

2. Avariable cannot begin with a number.

3. The variables are case sensitive. Means Amar is differ the ‘AMAR’ are two separate variables.
4. Variable names should not be reserved word or keyword.

5. No special characters are used except underscore (_) in variable declaration.

6. Variables can be of unlimited length.

Python variables do not have to be explicitly declared to reserve memory space. The variable is
declared automatically when the variable is initialized, i.e, when we assign a value to the variable

first time it is declared with the data type of the value assigned to it.

This means we do not need to declare the variables. This is handled automatically according to the

type of value assigned to the variable. The equal sign (=) ie., the assignment operator is used to

assign values to variables.
The operand to the left of the = operator is the name of the variable and the operand to the right of

the = operator is the literal value or any other variable value that is stored in the variable.

Syntax: variable=value

Example: For variable.
>>> a=16

>> @

18

>>>

Python language allows assigning a single value to several variables simultaneously.

Example: a=b=c=1

All above three variables are assigned to same memory
value 1.

‘location, when integer object is created with

one, ee oS ces neal

Scanned with CamScanner

Scanned with CamScanner

1.11
 Programming with ‘Python’

2, Numeric Literals:

Numeric literals are immutable. Numeric liter

s can belong to following four different numerical types.

Introduction and Syntax 0! Fp

als comprise number or digits form 0 to 9.

 « Numeric literal

int (signed integers) long (long integers) float (floating point) complex (complex)

Numbers (can be both

positive (+) and

negative (-)) with no

fractional part.

Example: 100

Integers of unlimited

size followed by lower-

case or uppercase L.

Example: 87032845L

Real numbers with both

integer and fractional

part.

Example: 26.2

In the form of a+bj

where a forms the real

part and b forms the

imaginary part of

complex number.

Example: 3.14j

3. Boolean Literals:

A Boolean literal can have any of the two values namely, True or False.

Example: For Boolean literal.

>>> 5<=2

False

>>> 3«9

True

>>>

4. Special Literals:

e Python contains one special literal ie., None. It is special c

represent the absence of a value or null value.

None is used to specify to that field that is not created. It is also used for end of lists in Python.

onstant in Python programming that

Example: For special literal.

>>> val1=10

>>> val2=None # N is in uppercase here

>>> vali

10

>>> val2

>>> print (val2)

None

>>>

5. Literal Collections:

* Collections such as tuples, lists and dictionary are used in Python.

(i) List:
types. Lists are mutable i.e., modifiable. The values stored in

o List contain items of different data

list are separated by commas(,) and enclosed within a square brackets ([]). We can store different

type of data in a list.

Value stored in a list can be retrieved using the slice operator({] and [:]). The plus sign (+) is the

list concatenation and asterisk(*) is the repetition operator.

(ii) Tuple:

o Tuple is used to store the sequence of immutable python objects.

o A tuple can be created by using () brackets and separated by commas (,).

(iii) Directory:

© The directory in Python is a collection of key value pairs created using { }.

° The key and value are separated by a colon (:) and the elements/items are separated by

commas (,).

Scanned with CamScanner

with ‘Python’
Programmi :

ral collections.
Example: For lite

create list

>>> numbers=[1)
 2.32425

>»»> print(numbe
rs)

create tuples

>>> List=(‘a’, ‘b’» °C’)

>>> print (list1)

create dictionary

>>> List2={ ‘fname’: ‘vijay’,

6,7]

“Iname? : ‘patil’ }

>>> print (list2)

Output:

[1,2,3,4,5,6,7]

(rae Des co)

{‘fname’ : ‘vijay’, “lname’ ; ‘patil’ } . Value and Type of Literals: : si

; Programming languages contain data in terms of input and output and any kind of cm ,

i f value. presented in terms 0 =

Value can be of numbers, strings or characters. To know the exact type of any value, python pro

in-built method called type.

Syntax: type(value)

Example: For value and type literals.

>>> type(‘hello python’)

<class ‘str'>

>>> type(‘a’)

<class ‘str'>

>>> type(123)

<class ‘int'>

>>> type(11.22)

<class 'float'>

‘4-3 Indentation

* Most of the programming languages like C, C++, Java
use braces { } to define a block of code. Python uses

| indentation.

A code block (body of a function, loop etc.) starts with
indentation and ends with the first un-indented line,
The amount of indentation is up to us, but it must be Sa i tara Consistent throughout that block.
Generally, four whitespaces are used for indentation and is preferred Over tabs, (See Fig. 1.8).

Scanned with CamScanner

Frograrninirig win rytnon 1.13 Introduction and Syntax of Python Program

Example 1: For indentation.
>>> for i in range (1,11):

print(i)

Example 2: For indentation in python,
>>> for i in range(1,11):

print(i)
Output: AiG diate.

1 break
; Output:
4 1
5 2

6 3

7 4

8 5
9

18

Commenting in Python
Comments are meant for computer programmers for better understanding a program. Python
interpreter ignores the comment in the program.

1. Single Line Comment (#):
« Single line comments are created simply by beginning a line with the hash (#) character, and they

are automatically terminated by the end of line.
Example 1: For single line comment. Example 2: For single line comment.

print is a statement print(‘Hello Python’) # print is a statement
print(‘Hello Python?) |

* When the python interpreter sees #, it ignores all the text after # on the same line.
2. Multiple Line Comments (’”):

In some situations, multiline documentation is required for a program. If we have comments that
extend multiple lines, one way of doing it is to use hash (#) in the beginning of each line. Another
way of doing this is to use quotation marks, either or """,

* Similarly, when it sees the triple quotation marks "" it scans for the next " and ignores any text in
between the triple quotation marks.
Example: For multiline comment.

'"'This is first python program

Print is a statement'''

[REM PyTHoN ENVIRONMENT SETUP (INSTALLATION AND WORKING OF IDE)
* Python distribution is available for a wide variety of platforms such as Unix, Linux, Macintosh and

Windows. We need to download only the binary code applicable for the platform and install Python.
* The most up-to-date and current source code, binaries, documentation, news, etc. is available on the

official website of Python https://www.python.org/.
Installing Python in Windows:

Step1: Open any internet browser then type http:///www.python.org/downloads/ in address bar
and Enter. The Home page will appear, (See Fig. 1.9).

=o —~ =
© GO trent name i =: menemmes 2 oe

2 python

ae eee a —

Fig. 1.9: Home Page

Scanned with CamScanner

Scanned with CamScanner

Programming with 'Python’ ees eae

Starting Python in different Modes:
a.

—$____ 518 __itroduction and Syntax of Python Program Step5 : After complete the installation close the windows,
& Python B71 bit) Satu,

Setup was successful

Special thanks to Mark Hamnend, without whose years of freely shared Windcoms erpertion, Python tor Wires wots Stl be Python for 005.

New to Python? Start with the Shit atonal and { documentation
7

See what's new in this relense,
ee

7 © Disable path length lienét
Changes your machine Comba attic Vo adres preap eens, wcheceg § phen +5 bypass the 260 character MAI_DATOO lermtiatin

python

windows
Sow

Fig, 1.13

Starting Python (Command Line):
A Python script can be executed a.
on the application,
In command line mode, we type the Python programming program on the Python shell and the interpreter prints the result. The steps are given below:
Step1: Press Start button, (See Fig. 1.14).

t command line also. This can be done by invoking the interpreter

Recently added

@ Python 3,7 (32-bit)

B Python 3.7 Module Docs (32-bit)

ay UES Weer

Sr ae

iene atop)

Acrobat Reader D

alee ase ed

vite,

 P |Type here to search

Fig. 1.14

Scanned with CamScanner

: ™“"S
a

1.16 Introduction and Syntax of Python py ? ; ith ‘Python’

‘ey r
Programming

with ‘Python ____—

nd then click on Python 3.7 (32 bit) as shown in Fig, 1.14, We wil] i All Programs a
|

Step2 : Clickon | iti ah oe ee :

the Python interactive p
|

leo
:

Fig. 1.15

Python command prompt contains an opening message >>> called command Prompt, The

: cursor at command prompt waits for to enter Python command. A complete c ommand/s

: called a statement. For example check first command to print message, in Fig. 1.16,

Fig. 1.16
Step 3 : To exit from the command line of Python, use Ctrl+z or quit() followed by Enter. 2. Starting Python IDLE:

When we install Python 3, we also get IDLE (
color syntax-highlighting editor, a debugge
online documentation Set.

. es 2 Integrated Development Environment). IDLE includ

3s r, the Python Shell, and a complete copy of Python

The steps are Biven below:

Step1: Press Start button and click on IDLE (Python 3.7, 32-bit) options.

Scanned with CamScanner

on Program
Programming with ‘Python’ 1,17 Introduction and Syntax of Pyth ogran

ne ae

r Python 3,7 (2b)

| Le Ae hd

| Ae a

Lepand

Most used

YY) ce

i] Google Chrome

ea] Ce

Acrobat Reader DC

oO Ce mel

CI
ha
See

We) OMT a

ry

© Type here to search

Fig. 1.17

Step 2 : Wewillsee the Python interactive prompt i.e. interactive shell.
(BD Python 3.7.1 shett - o x
File Edit Shell Debug Options Window Help
Python 3.7.1 (v2.7.1:260ec2c36a, Oct 20 2016, 14:05:16) [MSC v.2915 52 bat (Inte *|
1)1 on wins2
el “help”, “copyright”, "oredita” or "license()" for more information.
>>>

inten eseatsisernssentnnasisenenta j in ean

Fig. 1.18

Python interactive shell prompt contains opening message >>>, called shell prompt. A

cursor is waiting for the command. A complete command is called a statement. When we

write a command and press enter, the python interpreter will immediately display the

result.

Scanned with CamScanner

1.18 Introduction and Syntax of

Programming with ‘Python’ - Oo x

[iB Python 3.7.1 Shell
Debug Options Window Help

nn
2018, 14:05:26) pasc v.1915 32 bit (Inte *%

File

Python 3-7-1 {v3.7-1:260ecze36e,
Oct 20

ig P
"credita” oF "license ()" for more information.

Type "help", “copyrigne’,
>>> print ("Helle Python’)

Hello Python
>>>

Fig. 1.19

Executing Python Programs Scripts:

e In Python IDLEs shell window, click on File, and select the New File or press Ctrl+N.

— Oo x

Window Help
c3éa, Oct 20 2018, 14:05:16) (MSC v.1915 32 bit (Inte
"credits" or "license()" for more information.

Scanned with CamScanner

Scanned with CamScanner

Programming with Python : = ciel

After clicking Run Module, we will get the output of program on Python shell.

[3 Python 3.7.1 Shelt - OQ xX
File Edit Shell Debug Options Window Help : wil ell
Python 3.7.1 (v3.7.11260ec2c36a, Oct 20 2018, 14705116) [MSC v.1915 32 bit (Inte A
1)] on wins2
Type "help", "copyright", “credits” or "license()" for more information.

= RESTART: C1/Users/vijay/AppData/Local/Programs/Python/Python37-32/tes
t.py =

Hello Python

This is First Script

>>> |

v

_Um7 Cob4

Fig. 1.25

[ERY RUNNING SIMPLE PYTHON SCRIPTS TO DISPLAY ‘WELCOME’ MESSAGE"
e There are two modes for executing Python program namely Interactive mode Programming ang

Script mode programming.

¢ Ininteractive mode programming, interpreter is invoked and the programmer can code statemen
directly to the interpreter without passing a script file as a parameter.

¢ In script mode programming, the complete script is written in an editor such as Notepad jj
Windows and then interpreter is invoked with a script parameter. It begins execution of the crit
and continues until the script is finished.

1. Interactive Mode Programming:

* Click on All Programs and then click on Python 3.7 (32-bit). We will see the Python interactive prom
in Python command line.

* This method invokes the interpreter without passing a script file and brings up the followin
prompt, (See Fig, 1.26).

BF Python 3.7 (64-bit) - Oo x|

ript is finished. When the scri
* Let us write a simple Pytho

source code ina test.py file:
print"Welcome, Python!"

Pt is finished, the interpreter is no longer active.
n program in a script. Python files have extension .py. Type the follow

Scanned with CamScanner

Programming with ‘Python’ 1.21 Introduction and Syntax of Python Program

e We assume that we have Python interpreter set in PATH variable. Now, try to run this program as

follows:

$ python test.py

Output:

Welcome, Python!

e OnLinux OS to execute a Python script modified test.py file:

#!/usr/bin/python

print"Hello, Python!"

¢ We assume that we have Python interpreter available in /usr/bin directory. Now, try to run this
program as follows:

$ chmod +x test.py # This is to make file executable

$./test.py

Hello, Python!

pe PYTHON DATA TYPES
¢ The type of data value that can be stored in an identifier/variable is known as its data type.

¢ The data type determines how much memory is allocated to store data and what operations can be

performed on it.

¢ The data stored in memory can be of many types and are used to define the operations possible on

them and the storage method for each of them.

¢ Python handles several data types to facilitate the needs of programmers and application developers

for workable data.

Declaration and Use of Data Types:

e One of the main differences between Python and strongly-typed languages like C, C++ or Java is the
way it deals with types. In strongly-typed languages every variable must have a unique data type.

e For example, if a variable is of type integer, solely integers can be saved in the variable. In Java or C,

every variable has to be declared before it can be used. Declaring a variable means binding it to a
data type.

e Declaration of variables is not required in Python. If there is need of a variable, we think of a name

and start using it as a variable.

¢ Inthe following line of code, we assign the value 42 to a variable:

i = 42

¢ The equal "=" sign in the assignment shouldn't be seen as "is equal to". It should be “read” or

interpreted as "is set to", meaning in our example "the variable i is set to 42". Now we will increase
the value of this variable by 1:

»>> ieir+l

>>> print i

43

>>>

* Python has various standard data types that are used to define the operations possible on them and

the storage method for each of them. Data types in Python programming includes:

1. Numbers: Represents numeric data to perform mathematical operations.

String: Represents text characters, special symbols or alphanumeric data.

List: Represents sequential data that the programmer wishes to sort, merge etc.

Tuple: Represents sequential data with a little difference from list.

Dictionary: Represents a collection of data that associate a unique key with each value.

Boolean: Represents truth values (true or false). o
y

=

S
N

Scanned with CamScanner

Introduction and Syntax of Python Program

1,22

Programming with ‘Python

EE Numbers Data Type

ta types store num ues, Number objects are created when we assign a value to

Number da
eric val

them.
;

Integers, floating point num er

| are defined as int, float and complex in Python.

Integers:

‘An int data type represents an integer number.

or fractional point.

For example, a= 57, here ais ca

These represent numbers in the range

Floating Point Numbers:

The float data type represents t

contains a decimal point. Examples of float

= 2.345.

mplex Numbers:

Acomplex number i

s and complex numbers falls under Python numbers category. They

An integer number is a number without any decimal

lled the int type variable and stores integer value 57.

~ 2147483648 to 2147483647.

ng point number is a number that
he floating point number. The floati

-3,445, 330.44. For example,

ing point numbers, O35;

s a number that is written in the form of a+bj. Here, a represents the real part of

he number and b represents the imaginary part of the number.

the suffix J or j after b represents the square root value of -1. The part a and b may contain the

gers or floats. For example, 3+5j, 0.2+10.5j are complex numbers.

or example, in C=-1-5.5j, the complex number

s -1-5.5j and is assigned to the variable C.

lence, the Python interpreter takes the data he Z ’

pe of the variable C asa complex type. Fig, 1.27: Types of Numbers Data Type

ow which class a variable or a value belongs to and the

belongs to a particular class.

can use the type() function to kn

stance() function to check if an object

tegers (int Data Type):

integer is a whole number that can be positive

aly limited by the memory available.

ample: For number data types are integers.

(>>> a=10
>> a

(+) or negative (-). Integers can be of any length, it

>>> b=-10

>>> b
m4

| e the type of a variable type() function is used.

type(a)
<class ‘int’ >

ython 3, there is no limit to how long an int

computer’s memory space allows.” leper valteica bel COR geen

thon programming one can write integers in Hexadeci
.

adecimal
Bina!

Reesrmats my sing one of the following prefixes to the ett 16). Octal irene

WW ee > gaat ‘

ba age: ei , x F ns | i

‘Ob’ or ‘OB’ ;

4 2. ‘Oo’ or ‘00’ Octal

_3. ‘Ox’ or ‘OX’ tie :
decimal 16

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

1,26 Introduction and Syntax of Python Program

String Built-in Methods:
* String objects also have several useful methods to report various characteristics of the string, such

as whether it consists of digits or alphabetic characters or is all uppercase or lowercase.

Sr.No, | String Operation Explanation Example

1 4. Adds two strings together. X = “"hello”+"world”

2 |: - Replicates a string. X=" "420
2 | upper oe Converts a string to uppercase. x, upper()

lower Pr Converts a string to lowercase, x. lower()

title ; Capitalizes the first letter of each | x.title()

word in a string.

find, index Searches for the target in a string. x.find(y) x.index(y)

rfind, rindex Searches for the target in a string, | x.rfind(y) x.rindex(y)

from the end of the string.

Startswith, Checks the beginning or end of a | xstartswith(y) x.endswith(y)
endswith string for a match.

replace Replaces the target with a new | x.replace(y,z)
string.

strip, rstrip, lstrip | Removes whitespace or other | x.strip()
characters from the ends of a
string.

- encode Converts a Unicode string to a bytes | x. encode("utf_8”)
; object. = EY List Data Type

List is an ordered sequence of items. It is one of the most used datatype in Python and is very flexible. dst can contain heterogeneous values such as integers, floats, strings, tuples, lists and dictionaries jut they are commonly used to store collections of homogeneous objects.
The list data type in Python programming is just like an array that can store a group of elements and € can refer to these elements using a single name.
eclarin Bs list is pretty straight forward. Items separated by commas (,) are enclosed within

: For list.

first=(10, 20, 30]
Second=["One", "Two", "Three"]
first

®, 20, 30]
7,

homogenous values in list
homogenous values in list

"Two", Three’]

'd=[10, "one", 20, "two"] # heterogeneous values in list

le", 20, ‘two']
t + second

a '
prints the concatenated lists

» ‘Two’, ‘Three’]

Scanned with CamScanner

Scanned with CamScanner

Introduction and Syntax of Py

gramming with ‘Python’ a 8

ctionary data type is used. The dictionary da;

When we have the large amount of data, the di
modify/update any value in the dictionary,

mutable in nature which means we can update

aces { } and separated by the comma ()). A gg)

Items in dictionaries are enclosed in curly br
: /

used to separate key from value, Values can be assigned and accessed using square braces ({}

Example: For dictionary data type.

>>> dicie{1: "First", "Second" :2}

>>> dicl

{1: ‘First’, ‘Second’: 2}

>>> type(dicl)

<class ‘dict'>

>>> dici[3]e"Third"

>>> dicl

{1: ‘First’, ‘Second’: 2, 3: 'Third'}

>>> dicl.keys()

dict_keys([1, ‘Second', 3])

>>> dici.values()

dict_values([‘First’, 2, ‘Third’])

a >>>

FM input AND OUTPUT IN PYTHON PROGRAMMING _ 7

Input means the data entered by the user of the program. In python, the input() function is

accept an input from a user. The raw_input () function available for Input on older version.

without any argument
Syntax: variable_name=input()

with argument
variable_name=input(‘String’)

Example: For input in Python.

>>> input()

Hello python

‘Hello python

>>> x= input ("Enter data:")

Enter data: 11.22

>>> print(x)

41.22

Output means the data comes from computer after processing. In Python programmi g tl
a

function display the input value on screen.
a

Syntax: print(expression/constant/variable)
1H

Example: For output in python.

>>> print ("Hello")

Hello

>>> a="Hello"

>>> b="Python"

Scanned with CamScanner

_

Programming with ‘Python’ 1.29

Additional Programs:

1,

Introduction and Syntax of Python Program

Program to find the square root of a number.
xeint(input("Enter an integer number:"))

ans=x**@.5

print("Square root= ", ans)

Output:

Enter an integer number; 144

Square root= 12,0

2. Program to find the area of Rectangle.

l=float(input("Enter length of the rectangle: "))
b=float(input("Enter breadth of the rectangle: "))
area=1*b

print("Area of Rectange= ",area)

Output:

Enter length of the rectangle: 5

Enter breadth of the rectangle: 6

Area of Rectange= 30.0

3. Program to calculate area and perimeter of the square.

int(input("Enter side length of square: "))

area=side*side

perimeter = 4*side

print("Area of Square =", area)

print("Perimeter of Square =", perimeter)

Output:

Enter side length of square: 5

Area of Square = 25

Perimeter of Square = 20

4. Program to calculate surface volume and area of a cylinder.

pi=22/7

height = float(input('Height of cylinder: "))

radian = float(input('Radius of cylinder: '))

volume = pi * radian * radian * height

sur_area = ((2*pi*radian) * height) + ((pi*radian**2)*2)

print("Volume is: ", volume)

print("Surface Area is: ", sur_area)

Output:

Height of cylinder: 4

Radius of cylinder: 6

Volume is: 452.57142857142856

Surface Area is: 377.1428571428571

5. Program to swap the value of two variables.

numi=input("Enter first value: ")

num2=input("Enter second value: "y

print("Numbers before swapping”)

print("numi= “,num1)

print("num2= “,num2)

temp=num1

numi=num2

Scanned with CamScanner

'

lav —

rogenmming with Python
nund=temp

;

print(“Numbers
 after swapping)

print(“numl>
* num)

print(“num2=
“ num)

enter first value; 10

Enter second value: 20

Numbers before swapping

numi= 10

Num2= 22

Numbers after swapping

20 a

r1ctice Questions

What is Python programming language?

Give short history for Python.

Enlist applications for Python program

What are the features of Python?

List any four editors used for Python programming.

Python programming language is interpreted and intractive' comment this sentence.

to run python scripts? Explain in detail.

hat is interpreter? How it works?

Explain the following features of Python programming:

(i) Simple

ii) Platform independent

iii) Interactive

f) Object Oriented.

3in about the need for learning Python programming and its importance.

be the internal working of Python diagrammatically.

ite in brief about characters set of Python.

ite in brief about any five keywords in Python.

ite the steps to install Python and to run Python code.

at is the role of indentation in Python?

w to comment specific line(s) in Python program?

at is variable? What are the rules and conventions for declaring a variables?

it are the various data types available in Python programming.

nat are four built-in numeric data types in Python? Explain.

at is the difference between interactive mode and script mode of Python.

101 has developed as an open source project. Justify this statement.

ine the following terms:

Identifier

ming.

 in dictionary data type in detail.

Scanned with CamScanner

 A wz

List
Python Operators and

Control Flow Statements
a ee os <=

Chapter Outcomes...

Write simple Python program for the given arithmetic expressions.

Use different types of operators for writing the arithmetic expressions.
Write a 'Python’ program using decision making structure for two-way branching to solve the given

problem.

=)
=)

@)

Write a ‘Python’ program using decision making structure for multi-way branching to solve the given

problem.

Learning Objectives...

=) To understand Basic Operators in Python Programming

(=) To learn Control Flow and Conditional Statements in Python

{@) To study Looping in Python Programming

("| To understand Loop Manipulation Statements in Python

EQ) wrropuction
* Operators are the constructs which can manipulate the value of operands. Consider the expression

4+5-=9. Here, 4 and 5 are called operands and + is called operator. The Python language provides a
rich set of operators.

* The operator and operand when combined to perform a certain operation, it becomes an expression.
For example, in expression x + y, x and y are the variables (operands) and the plus (+) sign is the

operator that specifies the type of operation performed on the variables,

* Inany programming language, a program is written as a set of instructions. The instructions written
in programs are termed as statements.

* In Python, statements in a program are executed one after another in the order in which they are
written. This is called sequential execution of the program.

* But in some situations, the programmer may need to alter the normal flow of execution of a
program or to perform the same operations a number of times.

* For this purpose, Python provides a control structure which transfers the control from one part of
the program to some other part of the program.

* Acontrol structure is a statement that determines the control flow of the set of instructions i.e., a

program. Control statements are the set of statements that are responsible to change the flow of
execution of the program.

* There are different types of control statements supported by Python programming like
decision/conditional control, loop/iteration control and jump or loop control.

[2.1]

Scanned with CamScanner

pe ens

ator is a special symbol tha

5. The operands can be jj

Programming with ‘Python’

 i ifi specific action. An oper
bol which specifies a sP pate ae

e An operator is a sym if :

form a specific operatio
the interpreter to per

variables or expressions.
Goa

e An operand is a data item on which operator acts.
\

Operators are the symbol, which can manipulate the
: ' 4

value of operands. Some operators require two

operands while others require only one.

5 and 2 are
Operands

Consider the expression 5 + 2 = 7. Here,

called the operands and + is called the operator.

perators or binary operator.
Fig. 2.1: Concept of Operator and Oper

e InPython, the operators can be unary 0

perand. These operators are basically used to py

* Unary operators are operators with only one o

sign to the operand. +, -, ~ are called unary operators.

Syntax: operator operand

Example:

>>> x=10

>>> +X

10
Be. ik

-10

>>> ~x

-11

¢ The invert (~) operator returns the bitwise inversion of long integer arguments. Inversion of xi

computed as ~ (x + 1).

Binary operators are operators with two operands that are mani TI ipulated to get the result. TI
also used to compare numeric values and string values. P : ee

Syntax: operand1 operator operand2

e Binary operators are: **, *, /, %, +, -, <<, >>, & |, 4, <, >, <=, >=, ==, !=, <>
, , ‘ee? .

Example:

>>> x=10

>>> y=20

>>> x+y

>>> -X

30

>>> 243

5

Expression:
* An expression is i inati .,. ee Te but a combination of operators, variables, constants and rion é
* In other words, an ion i » an expression is a inati ;

evaluates to produce a value. combination of literals, variables and operators tha
For examples: 1 + g

Scanned with CamScanner

Programming with ‘Python’
roa = yn 2.3 Python Operators and Control Flow Statements

* The arithmetic operators perform basic arithmetic operations like addition, subtraction,
multiplication and division. All arithmetic operators are binary operators because they can perform
operations on two operands.

e There are seven arithmetic operators provided in Python programming such as addition,
subtraction, multiplication, division, modulus, floor division, and exponential operators.

« Assume variable a holds the value 10 and variable b holds the value 20.

Sr. Operator Operator ;

No. Symbol Name Description Example

1. i: Addition Adds the value of the left and right operands. >>> a+b

30

2. = Subtraction Subtracts the value of the right operand from | >>> b-a
the value of the left operand. 10

Bs 2 Multiplication | Multiplies the value of the left and right | >>> a*b

operand. 200

4. / Division Divides the value of the left operand by the right | >>> b/a
operand. 2.0

Ds rh Exponent Performs exponential calculation. >>> a**2
100

6. % Modulus Returns the remainder after dividing the left | >>> a%b

operand with the right operand. 10

7. // Floor Division | Division of operands where the solution is a| >>> b//a
quotient left after removing decimalnumbers. | 2

EEE] Assignment operators (augmented assignment Operators)
* Assignment operators are used in Python programming to assign values to variables. The

assignment operator is used to store the value on the right-hand side of the expression on the left-

hand side variable in the expression.

* For example, a = 5 is a simple assignment operator that assigns the value 5 on the right to the

variable a on the left.

* There are various compound operators in Python like a += 5 that adds to the variable and later

assigns the same. It is equivalent toa =a +5.

Following table shows assignment operators in Python programming:

Operator| ——SCDescription Example

Assigns values from right side operands to | c = a + b assigns value of a + b

left side operand. intoc

It adds right operand to the left operand and | c +=a is equivalent toc=c+a

assign the result to left operand.

It subtracts right operand from the left | c-=ais equivalent toc=c-a

| operand and assign the result to left operand.

—_|qt multiplies right operand with the left | c*=aisequivalenttoc=c*a

i nd and assign the result to left operand.

It | es left operand with the right operand | c /=ais equivalent toc=c/a

n the result to left operand.

sdulus using two operands and | c %=ais equivalent toc=c%a

al) calculation on | c**=a is equivalent toc=c**a

on value to the left

calculation on | c//=ais equivalent toc=c//a

to the left

Scanned with CamScanner

Programming with ‘Python’
24

EEE] relational or Comparison Operators
* Comparison operators in Python programming are

Relational operators either return True or False according to the condition.

e Assume variable a holds the value 10 and variable b holds the value 20.

Python Operators and Control Flow

binary operators and used to compare yg

Sr. No. Operator Description | Exa

1. == If the values of two operands are equal, then | >>> (a==b) |

(Equality Operator) the condition becomes true. False 4

Ps l= If values of two operands are not equal, then | >>> (al=b) }

(Not Equality Operator) condition becomes true. True ;

3. = If the value of left operand is greater than the | >>> (a>b)

(Greater Than Operator) | value of right operand, then condition becomes | False

true. a
4. < If the value of left operand is less than the | >>> (a<b)

(Less Than Operator) value of right operand, then condition becomes | True
true.]

5. >= If the value of left operand is greater than or | >>> (a>=b)

(Greater Than Equal to | equal to the value of right operand, then | False

Operator) condition becomes true.

6. <= If the value of left operand is less than or equal | >>> (a<=b)
(Less Than Equal to | to the value of right operand, then condition | Trye .
Operator) becomes true.

ERW] Logical operators
¢ The logical operators in Python programming are used to combine one or more relatior

expressions that result in complex relational operations. The result of the logical operator is
evaluated in the terms of True or False according to the result of the logical expression. ‘

¢ Logical operators perform logical AND, logical OR and logical NOT operations. These operations re
used to check two or more conditions. The resultant of this operator is always a Boolean valu

(True or False).

e Assume variable a holds True and variable b holds False then:

1. axD If both the operands are true then (a and b) is False. ‘, (Logical AND Operator) | condition becomes true. r.
| > OR . If any of the two operands are non-zero | (a orb) is True.

(Logical OR Operator) then condition becomes true.

3, NOT Used to reverse the logi es, | ogical state of its | Not(aandb)is
(Logical NOT Operator) | operand. S a 3

Bitwise Operators
Bitwise operators acts on bits and performs bit i provides ‘4

by bit operation. Python rogramming i a manipulation operators to directly operate on the bits or binary oo directly. hen we use bitwise operators on the o “ft perands, the a operation is performed on the bit di operands are firstly converted to bits and ti

Operators in Python Programming ; i
*d on two operands or one operand. are binary operators and unary operators that can b

Scanned with CamScanner

Programming with ‘Python’ 2.5 Python Operators and Control Flow Statements

« Following table shows bitwise operators assume a=10 (1010) and b=4 (0100).

| sr. No. Operator Description Example
1010 & e100

il ut 90008 ul ®
 1 & This operation performs | a&b

(Bitwise AND Operator) AND operation between

operands. Operator copies
a bit, to the result, if it

exists in both operands

2. | This operation performs | a|b
(Bitwise OR Operator) OR operation between

operands. It copies a bit, if
it exists in either operand.

3. 2 This operation performs | a*b=101@ * 6100 = 1110 =14
(Bitwise XOR Operator) | XOR operations between

operands. It copies the bit,
if it is set in one operand

1110 14 1010 | 9100

but not both.

4. a It is unary operator and | ~a= ~ 1010 = e101

Bitwise Ones ee aie Complement Operator) operand.

5. << The left operand's value is | a<<2 = 101@ << 2 =101000 = 40
(Bitwise Left Shift | moved left by the number
Operator) of bits specified by the

right operand.

6, >> The left operand's value is | a>>2 = 1010 >> 2 =@0@10 = 2
(Bitwise Right Shift | moved right by the number
Operator) of bits specified by the

right operand.

e Following table shows the outcome of each operations:
ee Tages :

0 0

0 1

1 0

a 1

Identity Operators
* Sometimes, in Python programming, need to compare the memory address of two objects; this is

made possible with the help of the identity operator.

* Identity operators are used to check whether both operands are same or not. Python provides ‘is’ and
‘is not’ operators which are called identity operators and both are used to check if two values are
located on the same part of the memory. Two variables that are equal does not imply that they are

identical. : - . -- ———

i. is Return true, if the variables on either side of the | >>> a=3
operator point to the same object and false | ,,, p.3
otherwise. >>> print(a is b)

True

2. is not Return false, if the variables on either side of the | >>> a=3

operator point to the same object and true | >>> p=3
| >>> print(a is not b)

Dak False
Scanned with CamScanner

Programming with 'Python'

Example 1:

>>> a=3

>>>, b=3.5

>>> print(a is b)
False

>>> a3

>>> b=4

>>> print(a is b)

False

>>> a=3

>>> b=3

>>> print(a is b)

True

>>>

Example 2;

>>> x=10

>>> print(type(x) is int)

True

>>>

Example 3:
2>> %2 = ‘Hello’

>>> y2 = ‘Hello’
>>> print(x2 is y2)
True
>> x2) = [1,253]
Be ¥3 =| [1,2,3]
>>> print(x3 is y3)
False
>>> x4=(1,2,3)
>>> -y4=(1,2,3)
>>> print(x4 is y4)
False

Pra _ In this example x3 and x4 are equal list but not identical. Inte _____ memory even though they have equal content. Similarly x4 an _ $e Membership Operators
The membership operators in Python Programming are used i i fa

__ element in the sequence and used only with sequences like stri act a “dictlogi . TES P Operators are used to check an item or an el - an a ae A

\é ¥ ‘tup e. A membership operator reduces the effort of sea chi gan ee
7

ae ovides ‘in’ i ; ' Tching an element in the list.
rovides ‘in’ and ‘not in’ operators which are called a value or variable is in a sequence, membership “a

a wait
ele Descr

True if value is found in 1 and false it item js Not in

Tpreter will locate them st

d y4 are equal tables but no

ce
Mi

 Pe =e»

nce,
nce

>>> x="Hello World
>>> print('H' in x
True (al

ist or in seque
list or in seque

 mM is in list or in > x Nelle a
}

>>> print("Hello" | E Se
False

 ae

Programming with ‘Python’

27 Python Operators and Control Flow Statements

Example:

>>> x="Hello World"

>>> print("H” in x)

True

>>> print("Hello” not in x)
False

>>> y={1:"a",2:"b"}

>>> print(1 in y)

using string

using dictionary

True

>>> print("a" in y)

False

>>> z=("one","two", "three") # using tuple
>>> print ("two" in z)

True

Python Operator Precedence and Associativity
An expression may include some complex operations and may contain several operators. In such a
scenario, the interpreter should know the order in which the operations should be solved. Operator
precedence specifies the order in which the operators would be applied to the operands.
Moreover, there may be expressions in which the operators belong to the same group, and then to
resolve the operations, the associativity of the operators would be considered.
The associativity specifies the order in which the operators of the same group will be resolved, i.e.,
from left to right or right to left.

1. Python Operator Precedence:

¢ When an expression has two or more operators, we need to identity the correct sequence to evaluate
these operators. This is because the final answer changes depending on the sequence thus chosen.

Example 1:

10-4*2 answer is 2 because multiplication has higher precedence than subtraction.

But we can change this order using parentheses () as it has higher precedence.

(10-4)*2 answer is 12

Example 2:
10+5/5

When given expression is evaluated left to right answer becomes 3. And when expression is

evaluated right to left, the answer becomes 11.

* Therefore, in order to remove this problem, a level of precedence is associated with the operators.

Precedence is the condition that specifies the importance of each operator relative to the others.

2. Associativity of Pythons Operators:
iativity helps to determine which the order of

When two operators have the same precedence, associa

weraiiane "associativity decides the order in which the operators with same precedence are

executed.

es of associativity.
|

‘states all The operator of same precedence is executed from the left side first.

(ii) Right-To-Left: The operator of same precedence is executed from the right side first.

Most of the operators in Python have left-to-right associativity.

Example:

>>> SP2//5

3

>>> 5*(2//3)

e

Scanned with CamScanner

Scanned with CamScanner

Programming with Fysver: 2.9 Python Operators and Control Flow Statements

Note that indentation is required for statements which are under if condition.

Control Flow Diagram of if Statement: Example:

i=10

Test Expression

if(i<15):

print("“i is less than 15")

print("This statement is notin if”)

True
Output:

Body of if | i is less than 15

This statement is not in if

Statement just
below if 7"

Example 1: To find out absolute value of an input number.
x=int(input("Enter an integer number:"))

y=x

if (x<@):

X=-X

print(‘Absolute value of',y, '=",x)

Output:

Enter an integer number:3
Absolute value of 3 = 3

Enter an integer number: -3

Absolute value of -3 = 3

Example 2: To find whether a number is even or odd.

number=int(input("Enter any number: "))

if (number%2)==6:

print(number, " is even number")

else:

print(number," is odd number")

Output:

Enter any number: 10

1@ is even number

Enter any number: 11

11 is odd number

ers if-else Statement
* if statements executes when the conditions following if is true and it does nothing when the

condition is false. The if-else statement takes care of a true as well as false condition.

Syntax:

if condition: OR if eg

statement(s) : if_bloc

else:
else:

else block
statement(s)

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Programming with ‘Python’ 2.18 _ Python Operators and Coritrol Flow Statements

OP MANIPULATION/LOOP CONTROL STATEMENTS
In Python, loop statements give us a way execute the block of code repeatedly, But sometimes, we

may want to exit a loop completely or skip specific part of loop when it meets a specified condition, {t

can be done using loop control mechanism.

Loop control statements change execution from its normal sequence. When execution leaves a

scope, all automatic objects that were created in that scope are destroyed.

Loop control statements in Python programming are basically used to terminate a loop or skip the

particular code in the block or it can also be used to escape the execution of the program,

The loop control statements in Python programming includes break statement, continue statement

and pass statement.

break Statement

The break statement in Python terminates the current loop and resumes execution at the next

statement, just like the traditional break found in C.

Syntax: break

Control Flow Diagram for break Statement: Example: For break statement.

Enter loop 1=0

while i<10:

i=i+1

if is=5:

Vee break

print("i= ",1)

Output:

False ie

is2

is=3

Exit loop i=4
Bea continue Statement

The continue statement in Python returns the control to the beginning of the while loop.
The continue statement rejects all the remaining statements in the current iteration of the loop and
moves the control back to the top of the loop.

Syntax: continue

Control Flow Diagram for continue Statement: Example: For continue statement.
Enter loop i=@

while i<10:
Test

expression isit1
of loop if is=5:

continue

print("i= ",i)

Output:

i=1

i=2

Exit loop ie
i=4

i=6

i=7

is8

i=9

i=10

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Programming with ‘Python’ 2.22 Python Operators ene Control Flow ewey |
Output:

enter &@ number: 121

Humber is palindrome

enter a number; 123
Number is hot palindrome

8. Program to return prime numbers from a list.
List«(3,2,9, 10,43, 7, 20,23)

PRINT("Lists", list)

ist)
PRINC("Prime numbers from the List are:")
for ain List:

primesTrue

for i in range(2,a):

if (aXixx@);

prime=False

break

if prime;

lL. append(a)

printd))

Output:

list= (3, 2, 9, 10, 43, 7, 20, 23]
Prime numbers from the list are:
(3, 2, 43, 7, 23)

9, Program to add, subtract, multiply and division of two complex numbers,
print("Addition of two complex numbers : ", (4435)+(3-73))
print("Subtraction of two complex numbers ; ", (4433)-(3-735))
print("Multiplication of two complex numbers : ", (4435)*(3-735))
print("Division of two complex numbers : ", (4439)/(3-73))
Output:

Addition of two complex numbers ; (7-43)

Subtraction of two complex numbers : (1+107)
Multiplication of two complex numbers : (33-193) i
Division of two complex numbers : (-@.15517241379310348+0 .63793103448275874) gr m to find the best of two test average marks out of three test's marks accepted from the

Ant(input(‘enter a number'))
Qeint(input('enter 2nd number’))
int(input('enter the 3rd number’))
le(nl+n2)/2

avg2=(n2+n3)/2

. Scanned with CamScanner

Scanned with CamScanner

a.
Data Structures

in Python

 Chapter Outcomes...

Write Python program to use and manipulate lists for the given problem.

Write Python program to use and manipulate tuples for the given problem.

Write Python program to use and manipulate sets for the given problem.

Write Python program to use and manipulate dictionaries for the given problem. e
a
e

Learning Objectives...

To learn Concepts of Lists like Defining, Accessing, Deleting, Updating and so on

To understand Basic List Operations and Built-in List Functions

To Study Concept of Tuples with Accessing, Deleting, Updating Values in Tuples

To study Basic Tuple Operations and Built-in Tuple Functions

To understand Concepts of Sets with Accessing, Deleting, Updating Values in Sets

To understand Basic Set Operations and Built-in Set Functions

To know Concepts of Dictionaries with Accessing, Deleting, Updating Values in Dictionary

To study Basic Dictionary Operations and Built-in Dictionaries Functions S
e
m

e
e
e
e
e

Eta) inrropuction
A data structure is a specialized format for organizing and storing data, so that various operations

can be performed on it efficiently and easily.

Any data structure is designed to organize data to suit a specific purpose so that it can be accessed

and worked with in appropriate and systematic manner/way. There are four data structures in

Python namely, list, tuple, dictionary and set.

A data structure that stores an ordered collection of items in Python is called a list. In other words, a

list holds a sequence of items or elements.

Similar to a list, the tuple is an ordered sequence of items. A set is an unordered collection of unique

items in Python. A dictionary in Python is an unordered collection of key value pairs.

The data types that are most used in Python are strings, tuples, lists and dictionaries. These are

collectively called as data structures.

EEG usts
A list in Python is a linear data structure. The elements in the list are stored in a linear order one

after other. A list is a collection of items or elements; the sequence of data in a list is ordered.

The elements or items in a list can be accessed by their positions ie. indices. The index in lists always

starts with O and ends with n-1, if the list contains n elements.

[3.1]

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

 Scanned with CamScanner

_

Pi ming with ‘Python’

35 _

« Following table shows the list methods used for updating list.

Data Structures In Python

—
Sr.

No. 2 rae Syntax Argument Description Return Type

1. | append() | list append(item) The item can be numbers, | Only modifies the
strings, another list, | original list. It does not

dictionary etc. return any value,

2, | extend() | listi.extend(1ist2) This extend() method| Only modifies the
takes a list and adds it to | original list. It doesn't

|_—— the end. return any value.

3, | insert() | list. insert(index, element) | This index is position | It does not return

where an element needs | anything; returns

to be inserted element - | None.
this the element to be
inserted in the list.

Let use see above methods in detail:

i, append() Method: The append() method adds an element to the end of a list. We can insert a
single item in the list data time with the append().

Example: For append() method.

>>> list1=[10, 20, 30]

>>>! Listi

[10, 20, 30]

>>> listl. append(4@Q)

>>> list1

[10, 20, 30, 40]

add element at the end of list

extend() Method: The extend() method extends a list by appending items. We can add several
items using extend() method.

—__ [10,[15, 25], 30, 20]

-

Example: Program for extend() method.

>>> list1=[10, 20, 30, 40]

>>> list1

[10, 20, 30, 40]

>>> list1.extend([60, 70])

>>> list1

[10, 20, 30, 40, 60, 70]

insert() Method: We can insert one single item at a desired location by using the method insert()
or insert multiple items by squeezing it into an empty slice of a list.

add elements at the end of list

Example; Program for insert() method.

>>> listi=[10, 20]

>>> listl

(16, 20]

>>> list1.insert(1,3@)

>>> list1

[10, 30, 20]
>>> listi=insert(1,[15,25])

>>> listi

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Data Structures In Python

Programming with ‘Python’ 3.9
il a

a max (list) It returns the item that has the | >>> list1
maximum value in a list. (1) 24.39 452d

>>> max(list1)

5

3. sum(list) Calculates sum of all the elements of | >>> list1

list. [4,25 35, 45. 5)

>>> sum(list1)

15

4. min(list) It returns the item that has the | >>> list1
minimum value ina list. [iy 2, Se dood

>>> min(list1)

1

5. list(seq) It converts a tuple into a list. >>> list1

[1, 2, 3, 45 oa

>>> list(list1)

[wien 4d

Methods of List Class:

| Sr. No. Methods Description Example

J, list.append(item) It adds the item to the end of the | >>> list1

list. felipe 2ieaan 45553)

>>> list1.append(6)

>>> list1

[1, 2, 3, 4, 5, 6]

2. list.count(item) It returns number of times the item | >>> list1
occurs in the list. FL 2 Sa 576, 31]

>>> list1.count(3)

2

Ey list.extend(seq) It adds the elements of the sequence | >>> list1
at the end of the list. Fa, e2ybr3a 4g! 5]

sprciist2
[cay Bay rer)

>>> list1.extend(list2)

>>> list1

(1,237 sey Sf ey
‘BY, 'C']

4, list .index(item) It returns the index number of the | >>> list1=[1,2,3,4,5,3]
item. If item appears more than one | 555 1ist1

ee be returns the lowest index [1, 2, 3, 4, 5, 3]

= ' >>> list1.index(3)
2

— It inserts the given item onto the | >>> list1 5. ist.i index, item) ins : » lis list. insert (inde given index number while the} (1, 2, 3, 4, 5, 3]
elements in the list take one right
shift. >>> listl.insert(2,7)

>>> list1

[3.2235 3, 4, 5, 3]

Data Structures in Python

Programming with ‘Python’ 3.10

It deletes and returns the last | >>> list1

element of the list. [1,29 7,233 4 5, 3)

>>> list1.pop()

6. list.pop(item=list[-1])

>>> list1l.pop(2)

 >>> list1

[1, 2» 3 4, 5]

>>> list1.remove(3)

>>> list1

[1, 2. 4 5]

It deletes the given item from the

list.
7 list.remove(item)

. list .reverse() It reverses the position (index | >>> list1

number) of the items in the list. [1, 2, 3, 4 5]

>>> listl.reverse()

>>> list

[5, 4, 3, 25 1)

a list.sort() Sorts items in the list. >>> listl

[1, 35 2, 4, 5]

>>> listl.sort()

Sous. 25:4, 5]

 10. list.sort([func]) It sorts the elements inside the list | >>> list1

and uses compare function if|[1, 3, 2, 5, 4]

provided. >>> list1.sort()

3 Ste

(ieee, 4,75)
 Ee turtes

A tuple is also a linear data structure. A Python tuple is a sequence of data values called as items or

elements. A tuple is a collection of items which is ordered and unchangeable.

A tuple is a data structure that is an immutable or unchangeable, ordered sequence of

elements/items. Because tuples are immutable, their values cannot be modified.

A tuple is a heterogeneous data structure and used for grouping data. Each element or value that is

inside of a tuple is called an item.

A tuple is an immutable data type. An immutable data type means that we cannot add or remove

items from the tuple data structure.

In Python tuples are written with round brackets () and values in tuples ca i

. ; F n also b heir

index values, which are integers starting from 0.
e accessed by t

Tuples are the sequence or series values of different types separated b ‘

iy
com : ust

like lists, but you can not change their values. y commas (,). Tuples are }

Difference between Tuples and Lists:

4. Avvalues in the list can be replaced with another any time after i
od : r its cre i les,

the values in it cannot be replaced with another, once tuples are created. ———

2. Lists allows us to add new items to i ; oe

created.
0 it, but tuple does not allow us to add new items, once it !§

3. We generally use tuple for heterogeneous (diffi :

(similar) data types. z (different) datatypes and list for homogeneov®

Scanned with CamScanner

_

Progrem = 3.11 Data Structures in Python

4, Since, tuple are immutable, iterating through tuple is faster than with list. So there is a slight
performance boost.

5. Tuples that contain immutable elements can be used as key for a dictionary. With list, this is not
possible.

6. Tuples can be used as values in sets whereas lists can not.
7. Some tuples can be used as dictionary keys (specifically, tuples that contain immutable values

like strings, numbers, and other tuples). Lists can never be used as dictionary keys, because lists
are not immutable.

Following table shows difference between strings, tuples and lists.

immutable (Value cannot be modified) Mutable (values can be modified)

str="hi" tuples=(5,4.0,'a') list=[5,4.0','a']
1. | Sequence Unicode Ordered sequence. Order sequence.

| character.

2 | Values cannot be modified. | Same as list butitis faster | Value can be changed dynamically.

than list because it is

immutable.

3. | Itisa sequence of Values stored in alpha Values stored in alpha numeric.
character. numeric.

4. | Access values from string. | Access values from tuples. | Access values from list.

5. | Adding values in not Adding values is not Adding values is possible.

possible. possible.

6. | Removing values is not Removing values is not Removing values is possible.

possible. possible.

EET creating Tuple

oe

To create tuple, all the items or elements are placed inside parentheses () separated by commas and

assigned to a variable.

The syntax for defining a tuple in Python is: <tuple_name> = (value1, value2, ... valueN).

Here, tuple name indicate name as the tuple and value1, value2,...valueN are the values assigned to

the tuple.

Example: Emp (22, “Amar”, ‘M’, 5@)

A tuple in Python is an immutable data type which means a tuple once created cannot be

altered/modified. Tuples can have any number of different data items (integer, float, string, list

etc.).

-_ method to create a tuple in Python is simply assigning a set of values to the tuple using

assignment operator (=). For example: t() # creates an empty tuple with name't’.

Example: For creating tuples.
>>> tuplei=(10, 28, 38) # Atuple with integer values

>>> tuplel

(18, 20, 30)

>>> tuple2=(18, "abc", 11-22, *x") # Atuple with different data types

>>> tuple2

(1®, ‘abe", 11.22, *X*) 4 ah
>>> tuple3=(“python", [10, 20, 32] ,[11,"abc",22.33]) # Nested tuple

>>> tuple3

(python’, [18, 2@, 3@], [11, ‘abc’, 22.33])

»

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

ing with ‘Python’
Programming with ‘Python 3.15

2, Membership Function:

we can test if an item exists in a tuple or not, using the keyword in. T

if it finds a variable in the specified sequence and false otherwise.

Data Structures in Python

he in operator evaluates to true

Example: For membership function in tuple.
>>> tuple

(10, 20, 30, 40, 5@)
>>> 30 in tuple

True

>>> 25 in tuple

False

3, Iterating through a Tuple:

> Iteration over a tuple specifies the way which the loop can be applied to the tuple.

¢ Using a for loop we can iterate through each item in a tuple. Following example uses a for loop to

simply iterates over a tuple.

Example: For iterating items in tuple using for loop.
>>> tuple=(10, 20,30)

>>> for i in tuple:

print(i) # use two enter to get the output

Output:

10

20

30

>>>

FR Build-in Functions and Methods of Tuple

¢ Following table built-in tuple functions in Python programming.

Returns item from the tuple | >>> tup1

with max value. (f°7500)

>>> max(tup1)

2. max (tuple)

:
*

| ‘Sr, No. Function Description Example _

: 1. len(tuple) Gives the total length of the | >>> tup1

|
tuple.

(L302 903)

:
>>> len(tup1)

3

:

Returns item from the tuple | >>> tup1

with min value.
(1, 2, 3)

>>> min(tup1)

1

3, min(tuple)

4. ere It zips elements from two tuples | >>>» tupi1=(1,2,3)

into a list of tuples. >>> tup2=("A’, ‘B’,"C')

>>> tup3=zip(tup1, tup2)

>>> list(tup3)

[(1, ‘A’), (2, *B'), 3, “C')I

 : eet ————T converts a list into tuple. >>> tuple1 = (1, 2, 3, 4, 5)

: 5. tuple(seq) >>> listi = list (tuple1)

: >>> list1

[1,2,3,4,5]
ie eres

Scanned with CamScanner

 Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Programming with ‘Python’ 3.20

Data Structures In Py
“yp >

es...
fone] Set with | set-symmetric_difference(so, . | synmetric_aifferenceQ Returns a nevgymmetric

the f two or
differences 0 ra pa
more sets : ih the set symmetric difference update. ts symmetric_difference_update() | Modify this set with of

symmetric rat
ie eh ca this set and others r or | set.isdisjoint(set) | 8. isdisjoint() Determines whethe

not two sets have any |
a elements in common Ehtaktpet) |

": issubset() Determines whether one | set.is

set is a subset of the |
Raa other t =| oe issuperset() Determines whether one | set. issuperset (set) |

set is a superset of the | ——————— other —_| i. add(item) It adds an item to the set. | set.add(set) |
It has no effect if the :
item is already present in

——_—_ 4} the set.
12. discard(item) It removes the specified | set.discard(set) | = item from the set,
B. remove(item) Remove an element from | set.remove(set)

a set; it must be a
member. If the element
is not a member, raise a
KeyError.

i. pop() Remove and return an set .pop(set) | arbitrary set element
that is the last element of
the set. Raises KeyError
if the set is empty, 15; update()
Updates the set with the set. update(set) union of itself and
others, ¢ Built-in functions like all(), any() enumerate(), len. : ” , max used with set to perform di en, max), min e Following table lis

fferent tasks, Consider set A = {3, 1,6,

ts built-in functions for set;

a Sorted(), sum() etc. are commonly

 >>> all (A) True

>>> any (A) True

>>> len(A)

>>> max(A)

>>> min(A)
1 el

>>> sorted(A)

| Sr. ¥ | so ee NG) |
: fi: all() Return True if all elem

—+— is empty).
set > any() Return True if any elem t aa! empty, return False. of the set is true. If the set is 3. | len() Return the length (the number of items) in the mg pe

4. | max() Return the largest item in the set, —--———____ 4 ——— 5. | min() Return the smallest item in the ger 7 ——|
6. sorted() | Returnanew sorted list from elea————__ sort the set itself), Nom elements in the sedoas nce 7. sum() Netrun the sum of all lements in theaop [1, 3, 6, 7]

>>> sum(A)
17 eee

Scanned with CamScanner

Scanned with CamScanner

Data Structure. inp y
The, j

3.22
ictionary. Diction;

Programmin, with ‘Python’

ty dictionary
sia Ter,

as an emp is known A pair of curly braces with no values in between ’ a ; , : ictionary are unique. Diction.

are accessed by keys, not by their ene the keys in the fe ence as and when TeQuirey neers ohana Nae omni or update the oie as look up a word “a @ Pape Dag.

Te changeable (m :
tha definition is its COrrespo, 3."

i ch the same way tlk * and the de
Xdin,

: dieibore eae definition ie, the word is the ' key
r

‘value’,
e ! ictionary. el n another di

Dictionaries can be nested i.e. a dictionary can contai Creating Dictionary
values in a way that allows them ;, be

* A dictionary can be used to store a collection of data dex to identify a data value, each tem in,
individually referenced, However, rather than using an in dictionary is stored as a key value pair.

m : : ir of key:values to the dictionay, The simplest method to create dictionary is to simply assign the pa :
using operator (=)
There are two wa s for creation of dictionary in python. : Bis in con 1. We can teats a dictionary by placing a oda bra ERBEE of key:value p Y brace, {}. Each key is Separated from its associated value by a colon(:).

Example: For creating a dictionary using { }. >>> dicti={}
>>> dict1

Empty dictionary

>>> dict2={1:"Orange", 2:"Mango", 3:"Banana"} # Dictionary with integer keys
>>> dict2
ake ‘Orange’, 2: "Mango' >>> dict3={"name":"
>>> dict3
{'name': ‘vijay’, 1: [10, 20}} 2. Python provides a build-in function dict() for Creating a dictionary. Example: Creating directory using dict(). >>> di=dict({1: "Orange", 2: "Mango", 3: "Banana"}) >>> dacdict ycaeg d,s (2 Yellow"), (3, "Gree?)]) >>> d3=dict(one=1, two=2, three=3)

5 Sh ‘Banana’ }
vijay", 1:[16,20]} # Dictionary with mixed keys

>>> di
{1: ‘Orange’, 2: ‘Mango’, 3: ‘Banana '} >>> d2
{1: 'Red', 2: "Yellow', 3: ‘Green '} >>> d3
{'one': 1, 'two': 2, ‘three’: 3}
Accessing Values ina Dictionary * Wecan access the items ofa dictionary by follow; , 1. Referring to its key name, ins} oe Ways:
Example: For accessing dictionary; >>> dict1={'name':
>>> dict1['name']
‘vijay’
>>> dicti['adr']
Traceback (most recent cal) last): File “<pyshell#79>" 1 dicti[‘adr']
KeyError: ‘adp*
>>>

 Here, if we refer to a key that avoided by using get() method. 's not in the ime
; mary,

on 7ow'll get an ©*ception.This error ¢3"

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

programming with ‘Python’ 3.25 __Data Structures in Python,

2. Keys must - immutable. Which means you can use strings, numbers or tuples as dictionary keys

but something like [‘key’] is not allowed.

Example:

>>> dict={[1]:'Vijay',2:'amar',3;'santosh'}
Traceback (most recent call last):

File “<pyshell#2>", line 1, in <module>
dict={[1]:'Vijay',2:'Amar',3: 'Santosh'}

TypeError: unhashable type: ‘list!

Built-in Functions and Methods for Dictionary

» Python has a set of dictionary methods that we can use on dictionaries. Some of them are given in

following table.

sr. Method D :
No. escription Example

1. | clear() Removes all the elements | dict={1:'Vijay’,2:
 ‘Amar’ ,3:'Santosh’ }

from the dictionary. Sosy oki:

{1: ‘Vijay’, 2: ‘amar’, 3: ‘Santosh'}

>>> dict.clear()

>>> dict

{}

Z copy() Returns a copy of the | >>> dict={1: ‘Vijay’, 2: ‘amar’, 3: ‘Santosh’ }

dictionary. >>> Xedict.copy()

>>> X

{1: 'Vijay', 2: ‘Amar’, 3: "Santosh' }

3. | fromkeys() The fromkeys() method | >>> dict=dict.fromkeys(['Vijay’, ‘Meenakshi'], ‘Author’)

creates a new dictionary | >>> dict

with GE value for all {'Vijay': ‘Author’, ‘Meenakshi’: ‘Author’ }

specified keys. —

If default value is not

specified, all keys are set to

None.

4. | get() Returns the value of the | >>> dict1={'name': ‘vijay’, ‘age’ :40}

specified key. >>> dict1.get(‘name’)

‘vijay’

5. | items() Returns a list containing | dict{1: ‘vijay’, 2: ‘Amar’, 3: 'Santosh'}

the a tuple for each key | >>> for i in dict.items():

value pair. print(i)

(1, 'Vijay’)
(2, ‘Amar')

(3, 'Santosh')

6. | keys() Returns a list containing | dict={1:'Vijay'
,2: ‘Amar’ ,3:"Santosh"}

the dictionary's keys. >>> dict.keys()

dict_keys([1, 2, 3])

-————
:

7. | pop() Removes the element with | dict=(1:'Vijay',2: "Aman" ,3:'Santosh’}

the specified key. >>> print(dict.pop(2))

=
Amar

See

 Scanned with CamScanner

Scanned with CamScanner

*

-

a

Called

Scanned with CamScanner

Programming with ‘Python’ 3.28 Data Structures in Python

>>> a

Traceback (most recent call last):

File "<pyshell#9>", line 1, in <module>

a

NameError: name ‘a’ is not defined

+ operator (String Concatenation):

* The concatenation operator (+) is used to join two strings.

Example: For + operator in string.

>>> "Hello" + "Python"

"HelloPython'

>>> sl="Hello”

>>> s2="Python"

>>> sl+s2

"HelloPython'

* Operator (String Multiplication):

¢ The multiplication (*) operator is used to concatenate the same string multiple times, it is called
repetition operator.

Example: for * operator in string.

>>> sl="Hello "

>>> S2=3*51

>>> s2

"Hello Hello Hello '

SSSA LISS
RRR KAR HK!

>>> a=" FF"

>>> a*S

4 oe fe ok oe ok ok Ko I

>>>

String Traversal (Traversing String with for Loop and while Loop):
e Traversal is a process in which we access all the elements of the string one by one using for and while

loop.

Example: Traversing using for loop.

>>> s=”Python Programming”

>>> for ch in s:

print(ch,end="")

Python Programming

>>> for ch in range(@,len(s),2):

print(s[ch],end="")

Example: Traversing using while loop.

>>> s=”Python Programming”

>>> index=0

>>> while index<len(s):

print(s[index],end="")

index=index+1

Output:

Python Programming

—

Scanned with CamScanner

Data Structures in Python 3.29

 str iT gs:

gs are immutable which means that we cannot change any element of a string. If we want to
change an element of a string, we have to create a new string.

— Example: For immutable string.

>>>str="Python”
>>estr

*python’

>>>str[@J="H"

Traceback (most recent call last):

File “<pyshell#33>", line 1, in <module>
str[@]="H"

ay TypeError: ‘str’ object does not support item assignment
« Here, when we try to change the 0" index of string to a character “H”, but the python interpreter

generates an error. The solution to this problem is to generate a new string rather than change the
old string.

Example:
>>>str="Python”

>>> stri='H'+str[1:]

>>> stri

"Hython'

* Consider the following two similar strings:
Stri=”Python”

Str2=”Python”

Here, Str1 and Str2 have the same content. Thus python uses one object for each string which has the
same content. Both Str1 and St2 refers to the same string object, whereas Str1 and Str2 have the
same ID number.

Example:

>>> Stri="Python”

>>> Str2="Python”

>>> id(Str1)

54058464

>>> id(Str2)

54058464

String Indices and Accessing String Elements:
* Strings are arrays of characters and elements of an array can be accessed using indexing. Indices

start with O from left side and -1 when starting from right side.

Str1

Str2

Fig. 3.7

S1=“Hello Python”

“ oo

wo
 o | 1-|.2 | 3 4} 5 he 10 | 11

~2|-1/-10/-9|}8|7/+6/s/;la4f3foatTla

——_——
Example:

>>> sl="Hello Python"

>>> print(s1[@]) # print first character

H 5

«>> -print(s1[11]) # print last character

a

>>> print(si[-12]) # print first character

 Scanned with CamScanner

q
e
e

Scanned with CamScanner

Programming with ‘Python’ 3.32 Data Structures in Python

3 \r ASCII Carriage return (CR) >>> print("Hello \r World!”)

Hello World!

10. |\t ASCII Horizontal tab (TAB) >>> print("This is tav \t key”) an

This is tav key

Li: \v ASCII Vertical tab (VT) >>> print("Hello \v World!”)

Hello

World!

12. \ooo ASCII Character with octal | >>> print("\110\145\154\154\157\40\127

value 000 \157\162\154\144\41") |

Hello World! |

13; \xhhh... ASCII Character with hex | >>> print ("\x48\x65\x6c\x6C\x6F\x28\x57)

value hh... \x6FAX7\X6C\x64\x21") |

Hello World!
|

String Formatting Operator:

uilt-in operation, the % operator (modulo). This is also called the

¢ Thestring in Python have a unique b

string formatting operator. This operator is unique to strings and makes up for the pack of having

functions from C's printf() family.

gs Example:

>>> print("My name is %s and weight is %d kg!"%('Vijay' ,6@))

My name is Vijay and weight is 60 kg!

_ Sr. No. Format Symbol Conversion

al %C Character.

Pa %S string conversion via str() prior to formatting.

3 %i signed decimal integer.

4. %d signed decimal integer.

a %u unsigned decimal integer.

6. %0 octal integer.

7. %X hexadecimal integer (lowercase letters).

8. WX hexadecimal integer (UPPERcase letters).

9, %e exponential notation (with lowercase 'e’).

10. %E exponential notation (with UPPERcase 'E’).

11. %f floating point real number.

AZ %E the shorter of %f and %e.

is %G the shorter of %f and %E.

String Formatting Functions:

e Python includes the following built-in functions to manipulate strings.

:| |
1. | capitalize() Makes the first letter of the | >>> sl="python programming”

string capital. >>> sl.capitalize() :

‘Python programming’ _

2. | center(width, Returns a space padded string | >>> si="python programming”)

fillchar) | with the original string centered | >>> print(si.center(3@, ‘*’))
to a total width columns. #s#***python programming****** |

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

CA
Python Functions,

Modules and Packages ,
moi

 Chapter Outcomes... a) s) Use the Python standard functions for the giving problem,
lm) Develop relevant user defined functions for the given problem using the Python code. f™] Write Python module for the given problem.
fm) Write Python package for the given problem.

Learning Objectives...

 To learn Basic Concepts of Functions
To study use of Python Built-in Functions
To understand User Defined Functions with its Definition, Calling, Arguments Passing etc.
To study Scope of Variables like Global and Local
To learn Module Concept with Writing and Importing Modules
To study Python Built-in Modules like Numeric, Mathematical, Functional Programming Module
To learn Python Packages with its Basic Concepts and User Defined Packages S

e
e
e
m
e
e

ZX irropuction
Functions, modules and packages are all constructs in Python programming that promote code
modularization. The modularization (modular programming) refers to the process of breaking a
large programming task into separate, smaller, more manageable subtasks or modules.
A function is a block of organized, reusable code that is used to perform a single, related
action/operation. Python has excellent support for functions.

A function can be defined as the organized block of reusable code which can be called whenever
required. A function is a piece of code that performs a particular task.

A function is a block of code which only runs when it is called. Python gives us many built-in
functions like print() but we can also create our own functions called as user-defined functions.
A module in Python programming allows us to logically organize the python code. A module is a
single source code file. The module in Python have the .py file extension. The name of the module

i file.

este meauie re defined as a python program file which contains a python code including
python functions, class, or variables. ie ee words, we can say that our Python code file saved with

i i as the module.

necro us to create a hierarchical file directory structure of modules. For
example, mymodule.mod1 stands for a module modi, in the package mymodule.

A Python package is a collection of modules which have a common purpose. In short, modules are

grouped together to forms packages.

[4.1]

Scanned with CamScanner

Type Data Conversion Functions

Programming with 'Python'

EEG use OF PYTHON BUILT-IN FUN

 ONS _ ms isi
— that act like a Pro

tements ;
Functions are the self-contained block of sta available for use. These fur»;

task. functions the given object to the Stand,,
The Python interpreter has a number of fun int)

are called built-in functions. For ean

output device (screen) or to the text stream ie ss

Python built-in (library) functions can be ¥ and some are C
comes in category of mathematical functions

on

gram that performs . m

that are always
function prints

2 Some of these fy, fic tasks. : “UNCtipy.
perform Te type conversion functions a,

n the puilt-in types. To convert betwee,
Sometimes it's necessary to perform conversions betwee
types we simply use the type name as a function. rform special kinds of conversions. a) of
In addition, several built-in functions are supplied to pe rted value.
these functions return a new object representing the nvert one data type to another. Dats
Python defines type conversion functions Ry es ee
conversion in Python can happen in following two : licitly, and/or
1. Either we A the compiler to convert a data type to some other type exp y
2. The compiler understands this by itself and does it for us.

on Implicit Data e Conversion: . . ae
eee one ne data type conversion takes place either during compilation or during
run time and is handled directly by Python.
Example: For implicit data type conversion.

>>> a=10

>>> b=25.34

>>> sum=a+b

>>> print sum

35.34

>>>

 In the above example, an int value a is added to float value b, and the result is automatically converted to a float value sum without having to tell the compiler. This is the implicit data conversion.
In implicit data conversion the lowest Priority data type alwa et i iority data type that is available in the source code, ¥® Bet converted to the manent priority Python Explicit Data Type Conversion:
Explicit conversion also known as type casting where we fo s Ce While developing a program, sometimes it is desi wre an expression to be of a specific type. esirab ‘ Python, this can be accomplished very easily by le to convert one data type into another. !1 maki ilt-i aking use of built-in type conversion functions.

Ew oO Tresenti data type conversion functions with their sles Ariat ee oa es awe A Uist
ra = es : 1S given in following table

1. | int(x [,base]) Converts x to an | = : integer. | x=int¢: oe, base specifies the base ifx |. net" aa60 »base=2)=12 is a string. “int (*1234: »base=8)=668 2) long(x [,base]) Converts * Suey lon
es

integer. base SPeCifies the x=long(“123” base=g)=331 ase if xis a strin *=long(«44>
3 =

g. BC *11 sbase=16)=17L 7 oat(x) Converts x to a float
- point number. ting-

‘
 x :

“Float(123 .45*)=193.45

contd

Scanned with CamScanner

43 Python Functions, Modules and Packages

 Creates a complex number. x=complex(1,2) = (1+23)

 Converts object x to a string
representation.

xestr(10) = ‘10’

 Converts object x to an
expression string,

xepepr(3) = 3

 Evaluates a_ string and
returns an object.

xzeval('1+2') = 3

 Converts s to a tuple, xetuple('123') = (‘1', ‘2°. 3")

x=tuple([123]) = (123,)

 Converts s to a list, yelist('123') = ['1', '2'> ras)

xelist(['12'] = ['12']

 Converts s to a set. x=set('Python')
a ns Tee ‘o', oP" LA. ‘h'}

 Creates a dictionary. d
must be a sequence of (key,
value) tuples.

dict={'id':'11", ‘name': 'vijay'}

print (dict)

={'id': '11', ‘name’: ‘vijay'}

 Converts an integer to a
character,

x=chr(65) = ‘A’

 Converts an integer to a
Unicode character.

xsunichr(65) =u’A’

 Converts a single character
to its integer value.

x=ord('A')= 65

 Converts an integer to a

hexadecimal string.

x=hex(12) = @xc

 Converts an integer to an

octal string. x=oct(8) = 0010

with ‘Python’

complex(real[,imag])

S. str(x)

. 6 repr(x)

9, | eval(str)

fe ot tuple(s)

rg, ~—si|: List(s)

10. set(s)

11. dict(d)

12. chr (x)

1s; unichr(x)

» 14, ord(x)

15. hex (x)

i 16. oct(x)

rmastting Numbers and Strings:

)
The format() function formats a specified value into a specified format.

‘Syntax: format(value, format

>>> x=12.345

>>> format(x,".2f")
2.35!

>>>

space).

_ Example: For string and number formation

 >>> x=10. 23456

>>> format(x,"<10.2F")

"10.23

: ons the result (within the available | >>>x=10.23456

- Banee’y >>> format(x,">10.2f")

P t 10.23'

A ; the result (within the | >>>x=10.23456

oe Ee >>> format (x, "*10.2f")

* 10.23 ‘

contd. .. Scanned with CamScanner

Scanned with CamScanner

programming with ‘Python’ 45 Python Functions,

Built-In Mathematical Functions

function can be described as a piece of code that may
or may not take some value(s) as input, process it, and
then finally may or may not return any value as
output.

python’s math module is used to solve problems

related to mathematical calculations. Some functions
are directly executed for maths functions we need to
import math module first.

Rp t

In python, there are two types of pre-defined functions.
Built-In Functions (Mathematical):

» These are the functions which doesn't require any external code file/

are a part of the python core and are just built within the Python compi
importing these modules/libraries in our code.

» Following table shows some of in built mathematical functions:

Input x

Function f:

Output f(x)

Fig. 4.1

Modules and Packages

Modules/ Library Files. These

ler hence there is no need of

Sr. No. | Functions Description Example

i min() Returns smallest value among supplied | >>> min(2, 10, 30)

arguments. 10

2; max() Returns largest value among supplied | >>> max(20, 10, 30)

arguments. 30

3. pow() The pow() function returns the value of x to the | >>> pow(2, 3)

power of y (xy). If a third parameter is present, it | 8

returns x to the power of y, modulus z. >>> pow(2,3,2)

8

4. round() The round() function returns a floating point | >>> round(1@.2345)

number that is a rounded version of the | 10

specified number, with the specified number of | >>> round(5.76543)

decimals. The default number of decimals is 0, | ¢

meaning that the function will return the | ,,, pound (5.76543, 2)

nearest integer. =o :

5. abs() Absolute function, also known as Modulus | >>> abs(-5)

(not to be confused with Modulo), returns the | 5

non-negative value of the argument value. >>> abs(5)

5

using these exter
our code and use the functions wh

* Following table shows some of inb

2. Built-In Functions (Math Module):

* The second type of functions require some

nal files in our co
ich are already written in that file.

uilt mathematical functions of Math Module

external files(modules) in order to be used. The process of

de is called importing. So all we have to do is import the file into

Tear

Description
© ge A

This function returns the smallest integral

value greater than the number. If number is

already integer, same number is returned.

>>> math.ceil(2.3) .

3

This function returns the greatest integral

value smaller than the number. If number is
>>> math. floor(2.3)

2
 | already intege! lready integer, same number is returned.

contd.

Scanned with CamScanner

Modules and Pac’
in Pan’ 46 Python Functions, chages:

i turns thecosine of value | >>> math.cos(3)

- BOGE! Gs wekcnant The value passed in this | -@.9899924966e04454

function should be in radians. fg tT ee

>>>math.cos(@)

1.6

4. | cosh() Returns the hyperbolic cosine of x. Rinietseriiee 3))

5, | copysign() Return x with the sign of y. On a platform | >>> math. copysign(1®, -12)
that supports signed zeros, copysign(1.0, -0.0) | -10.0
returns -1.0.

6. | exp() The method exp() returns returns exponential | >>> math.exp(1)

of x. 2.718281828459845

>>>

7. | fabs() This function will return an absolute or | >>> math.fabs(1@)
positive value. 10.8

>>> math. fabs(-2@) .
20.8

8. | factorial() Returns the factorial of x. >>> math. factorial(5) |

120
9. | fmod() This function returns x % y. >>> math. fmod(5@, 16) | 2.0

|
>>> math. fmod(5e, 2@)

I
10.08

| 10, | log(a,(Base)): | This function is used to compute the natural | >>> print(math. log(14))
logarithm (Base e) of a. 2.6398573296152584

11. | log2(a) This function is used to compute | >>> rint(math.log2(14))
the logarithm base 2of a. Displays more | 3.807354922057604
accurate result than log(a,2).

12. | log1e(a) This function is used to compute | >>> print(math.10g10(14))
the logarithm base 10of a, Displays more | 1.146128035678238
accurate result than log(a,10).

13. | sqrt() The method sqrt() returns the square root of x | >>> math. sqrt(1@@)
for x>0. 10.0

>>> math.sqrt(5)

2.23606797749979 14. | trunc() This function returns the truncated integer of | >>> math .trunc(3.354)
x 3

ee eee cole eral fae it f TPs rts me ASN a ee ee . ES user verwen FUN 5 sr ts hl di Dat ae ts ada eat

* Functions in Python programming are self- Erte

Once, a function is created by the progr
anytime to perform that task,
Python gives us many built-in functions like
functions. These functions are called user-
User defined function are the self-
requirements.
A user-defined function is a block of related code state
related action or task. A key objective of the concept
modularity and enable reusability of code.

Print(), len() etc. but
defined functions,

per
contained programs that perfo
ammer for a specific task, th

rm some particular tasks.
is function can be called

we can also create our own

contained block of statements created by users according to their

Scanned with CamScanner

ming with 'Python' program ing ¥ 4.7 Python Functions, Modules and Packages

Function Definition

Function definition is a block where the statements inside the function body are written. Functions

allow us to define a reusable block of code that can be used repeatedly in a program.
Syntax:

def function-name(parametes) t

"function_docstring"

function_statements

return [expression]

Defining Function:

. Function blocks begin with the keyword def followed by the function name and parentheses ()-

. Any input parameters or arguments should be placed within these parentheses. We can also define

parameters inside these parentheses.

« The first statement of a function can be an optional statement - the documentation string of the

function or docstring.

» Thecode block within every function starts with a colon: and is indented.

e The statement return [expression] exits a function, optionally passing back an expression to the

caller. A return statement with no arguments is the same as return None

* Thebasic syntax for a Python function definition is explained in Fig. 4.2.
Function name Arguments

An identifier by which the ~- - -. ----» Contains a list of values

function is called ‘ : passed to the function

def name(arguments):

indeittatl statement
ion Function body

Function body must ~---- Ser ---- This is executed each time

be indented ~ the function is called
return value

: Return value
*---® Ends function call and sends

data back to the program

Fig. 4.2

Function Calling

* The def statement only creates a function but does not call it. After the def has run, we can call (run)

the function by adding parentheses after the function’s name.

Example: For calling a function.

>>> def square(x): # function definition

return x*x

>>> square(4) # function call

16

aD

Concept of Actual and Formal Parameters:

1. Actual P ters: aramete nction call are called actual parameters. These are the actual values

* The parameters used in the fu

that are passed to the function.

variables.

* The data types o

parameters (variables) in the fun

i i function call

3 eae ed to the function definition through the function call.

ii) Th ctual values that are pass

i They a be constant values or variable names (such as local or global).

The actual parameters may be in the form of constant values or

f actual parameters must match with the corresponding data types of formal

ction definition.

Scanned with CamScanner

4.8 Python Functions, Modules and Packages

Programming with ‘Python’

2. Formal Parameters:
der of function definition are called formal parameters of the

* The parameters used in the hea
d to receive values from the calling function.

function. These parameters are use

(i) They are used in the function header.

the values that are passed to the function through function call.
(ii) They are used to receive

:

(iii) They are treated as local variables of a function in which they are used in the function header.

Example: For actual and formal parameters.

>>> def cube(x): # formal parameters

return x*x*x

>>> result = cube(7) # actual parameters

>>> print(result)

Call by object reference

e Most programming languages have a formal mechanism for determining if a parameter receives a

copy of the argument (call by value) or a reference to the argument (call by name or call by

reference) but Python uses a mechanism, which is known as "Call-by-Object/Call by Object

Reference/Call by Sharing".

Example:

>>> def increment(n):

n=n+1

>>> a=3

>>> increment(3)

>>> print(a)

3

¢ When we pass a to increment (n), the function has the local variable n referred to the same object:

3

 uN

e eee pr eg =n+1 as integer is immutable, by definition we are not able to modify the
object's value to 4 in place: we must cre j i i ize i re Dp ate a new object with the value 4. We may visualize it like

4 I

e All this time, the variable a continues to refer to th bj i ! - : ;
sisaineteneticns object with the value 3, since we did not change

3 I

¢ Wecan still “modify” immutable objects by capturing th e return i
>>> def increment(n): : enna

n=n+1

return n

>>> a=3

>>> a=increment(3)

>>> print(a)

4

Scanned with CamScanner

=

Programming with ‘Python’
4.9 Python Functions, Modules and Packages:

“ the function to a, we have reassigned a to refer to the new object
‘ : unction. Not i initi =the still 3 — but by having a Bein ¢ e the object a initially referred to never change — it is iticofa. © @ new object created by the function, we are able to “modify” the

The same increment() function
is a list which is mutable

>>> def increment(n):
n.append([4])

>>> L=[1,2,3]
>>> increment(L)

>>> print(L)

eeoys; (af)
Here, the statement L = [1,2,3] makes a variable L(box) that points towards the object (1,2,3]. On the function being called, a new box n is created. The contents of n are the SAME as the contents
of box L. Both the boxes contain the same object. That is, both the variables point to the same object in
memory. Hence, any change to the object pointed at by n will also be reflected by the object pointed
at by L.

+)

n

By assigning the return value
with the value 4 created in the

generates a different result when we passing a mutable object: Here L

<
§
—
$
—
}
—
—

n
S

o
—
—

—

Hence the output of the above program will be:
(1, 2, 3, 4]

Advantages of User-Defined Functions:
1. User-defined functions help to decompose a large program into small segments which makes

program easy to understand, maintain and debug.

2. By using functions, we can avoid rewriting same logic/code again and again in a program.
3. We can call python functions any number of times in a program and from any place in a

program.
4. Wecan track a large python program easily when it is divided into multiple functions.
5. Reusability is the main achievement of Python functions.
6. Functions in Python reduces the overall size of the program.

Function Arguments

Many build in functions need arguments to be passed with them. Many build in functions require
two or more arguments. The value of the argument is always assigned to a variable known as
parameter. . :
There are four types of arguments using which can be called are Required arguments, Keyword

arguments, Default arguments, and Variable-length arguments.

Required Arguments

Required arguments are the arguments passed to a function in correct positional order. Here, the

number of arguments in the function call should match exactly with the function definition.

Example: For required argument.

>>> def display(str):
:

"This print a string passed as argument

print(str)

return
required argument

>>> display() _ .

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

nple: For void function.
‘>> def show():

str="hello”
print(str)

‘>> show()
iello
>>

Scope of Variable _ tg *

scope of a variable dete: . nit
ble/identifier.
wailability/accessibility of
* are two basic scopes c
mn:

lobal Variables: Global
ccessed throughout (outsi
ody by all functions.
ocal Variables: Local

4.3 shows, global v
ble (z) exists only |

iple: For scope of
>> g=10
>> def show(): —

1=20° 0
print("loca!
print("Global

»> show()
1cal variable= 2@
.obal variable= 10

gram This depend, On

Can access a Particy);,

ferred to as its scons

oe E)
s 4
*

re in the code, local

ared outside any

3 till the end of the

c ad the enti"

Scanned with CamScanner

: ramming with "Python ee i, YA Python Functions, Modules and Packages

A function is said to be a recursive if jt calls itself. For example, lets say we have a function abc() and

; in the body of abc there is a call to the abc(), = a
Example: For recursive function, i re ae sennl

def fact(n):

if n == 0:

return 1

else:

return n * fact(n-1)

print(fact(@))

print (fact (4))
print(fact(6))

Output:

1
24

720

« The factorial of 4 (denoted as 4!) is 1*2*3*4 = 24,
« Each function call multiples the number with the factorial of number 1 until the number is equal to

one.

fact (4) # Ist call with 4

4 * fact(3) # 2nd call with 3
4 * 3 * fact(2) # 3rd call with 2
4* 3 * 2 * fact(1) # 4th call with 1

pees 2s * 1 # return from 4th call as number=1

a3 * 2 # return from 3rd call

4*6 # return from 2nd call

24 # return from 1st call

¢ Our recursion ends when the number reduces to 1. This is called the base condition. Every recursive
function must have a base condition that stops the recursion or else the function calls itself

infinitely.

Advantages of Recursion:
1. Recursive functions make the code look clean and elegant.

2. Acomplex task can be broken down into simpler sub-problems using recursion.

3. Sequence generation is easier with recursion than using some nested iteration.

Disadvantages of Recursion:
1. Sometimes the logic behind recursion is hard to follow through.

2, Recursive calls are expensive (inefficient) as they take up a lot of memory and time.

3. Recursive functions are hard to debug.

4. It consumes more storage space because the recursive calls along with variables are stored on the
stack,

5. Itisnot more efficient in terms of speed and execution time.

Example: Programs to convert U.S. dollars to Indian rupees.

def dol rup():

dollars = float(input("Please enter dollars:”))

rupees = dollars * 7@

print("Dollars: ",dollars)
print("Rupees: ",rupees)

def euro_rup():

euro= float (input("Please enter euro:"))

rupees = euro * 79.30

print("Euro: ",euro)

print("Rupees: ",rupees)

Scanned with CamScanner

python Functions, Meee eee ae

 Programming with ‘Python’ oe ee

def menu():

print(“1: Doller to Rupees”)

print("2: Euro to Rupees”)

print(*3: Exit”)

choice=int(input("Enter your choice: "))

if choice==1:

dol_rup()

if choice==2:

euro_rup()

if choice==3:

print("Good bye!")

menu()

Output:

i: Doller to Rupees

2: Euro to Rupees

3: Exit

Enter your choice: 1

Please enter dollars:75

Dollars: 75.8

Rupees: 5258.8

EE} vovutes ' a oy SS
which contain Python programming code defining functions,

Modules are primarily the (.py) files
ded in its file name. A file containing .py python code is

class, variables, etc. with a suffix ._py appen

called a module.

If we want to write a longer program, we can use file where we can do editing, correction. This is

known as creating a script. As the program gets longer, we may want to split it into several files for

easier maintenance.

We may also want to use a function that we have wr

definition into each program.

In Python we can put definitions in a file and use them ina script or in an interactive instance of the

interpreter. Such a file is called a module.

itten in several programs without copying its

Writing Module
¢ Writing 2 module means simply creating a file which can contains python definitions and

statements. The file name is the module name with the extension .py. To include module in a file,

use import statement.
Follow the following steps to create modules:

1. Create a first file as a python program with extension as .py. This is your module file where we
can write a function which perform some task.

2. Create a second file in the same directory called main file where i
top of the file and call the function. eam eee vote

Second file needs to be in the same directory so that i
it’s not a built-in module. Pyar now whereta find the module since

Example: For creating a module. Type the following code and save it as p1

def add(a, b): men

"This function adds two numbers and return the result"
result = a+b

return result

def sub(a, b):

“This function subtract t ee ES wo numbers and return the result"

return result

Scanned with CamScanner

with ‘Python’
programming w 4.15 Python Functions, Modules and Packages

def mul(a, b):

"This function multiply two numbers and return the result”
result = a * b

return result

def div(a, b):

"This function divide two numbers and return the result”
result = a/b

return result

import the definitions inside a module:
import p1

print("Addition=" , p1.add(10, 2@))

print("Subtraction=" ,p1.sub(1@,20))

print("Multiplication=" »P1.mu1(10, 20))
print("division=" ,p1.div(10,2@))

Output:

Addition= 30

Subtraction= -10

Multiplication= 200

division= 9.5

EEE) importing Modules

Import statement is used to imports a specific module by using its name. Import statement creates a

reference to that module in the current namespace. After using import statement we can refer the

things defined in that module.

We can import the definitions inside a module to another module or the interactive interpreter in

Python. We use the import keyword to do this.

Create second file. Let p2.py in same directory where p1.py is created. Write following code in p2.py.

Import the definitions inside a module:

import p1

print(p1.add(10,2@))

print(p1.sub(20,1@))

Output:

30

10

Import the definitions using the interactive interpreter:

>>> import p1

>>> pl.add(10, 20)
30

>>> pl.sub(20,10)

18

>>>

Importing Objects From Module:
.

x

milar to #include header_file in C/C++. Python modules can get
Import stat t in python is si

een By orting the file/function using import. Python provides
access to code from another module by imp

three different ways to import modules.

From x import a:

Imports the module x,

by that module. If we run this stateme

in module x.

and creates references in the current namespace to all public objects defined

nt, we can simply use a plain name to refer to things defined

Scanned with CamScanner

; with ‘Python’
programming = y 4.17 Python Functions, Modules and Packages

Aliasing Modules

It is possible to modify the names of modules and their functions within Python by using

the ‘as’ keyword.
we can make alias because we have already used the same name for something else in the program

or we may want to shorten a longer name.

S tax: import module as another_name

Example: Create a module to define two functions. One to print Fibonacci series and other for

finding whether the given number is palindrome or not.

step 1: Create anew file p1.py and write the following code in it and save it.

def add(a, b):

"This function adds two numbers and return the result”

result = a+b

return result

def sub(a, b):

"This function subtract two numbers and return the result”

result = a- b

return result

def mul(a, b):

"This function multiply two numbers and return the result”

result = a * b

return result

def div(a, b):

"This function divide two numbers and return the result"

result = a/b

return result

Step 2: Create new file p2.p

import p1 as m

print("Addition=" , m.add(10, 20))

print("Subtraction=" ,m.sub(10, 20))

print("Multiplication=" ,m.mul(1@,2@))

print("division=" ,m, div(10, 2@))

Step 3: Execute p2.py file.

Addition= 398

Subtraction= -10

Multiplication= 200

division= 0.5

Python Built in Modules
’ h as functions, classes, and so on. Python interpreter is

Amodule is a collection of Python objects suc ses,

ting of large number of built-in modules,
bundled with a standard library consis

* Built-in modules are generally written in C and bundled with Python interpreter in precompiled

on script (with .py extension) containing useful utilities.

form, A built-in module may be a Pyth

* A module may contain one or more functions, classes, variables, constants, or any other Python

Tesources.

) Numeric and Mathematical Modules:
:

math-related functions and data types. Following are the

This module provides numeric and }

Modules which are classified as numeric and mathematical modules

(i) numbers (Numeric abstract base class

(ii) math (Mathematical functions).

(iii) cmath (Mathematical functions

y to include the module. Add the following code and save it.

es).

for complex numbers).

Scanned with CamScanner

Scanned with CamScanner

r

. hon Functions, Modules ang 5
o Packs 4.18 “th Programming with 'P hon’

ti)
metic).

q

5 : int arit
(iv) decimal (Decimal fixed point and floating pom

(v) fractions (Rational numbers).
(vi) random (Generate pseudo-random numbers).
(vii) statistics (Mathematical statistics functions). ~

The numbers module defines an abstract hierarchy of vmoating-pomt
Contain various mathematical functions — i. f decimal numbers, The decimal module supports exact representations ©
arithmetic.

math and cmath Modules: thandcmath. The math module give, Python provides two mathematical modules namely ae ns for real numbers and cmath mog ‘ access to hyperbolic, trigonometric, and logarithmic vise mbers. = allows us to work with mathematical functions for complex nu

Example 1; For math module.

>>> import math
>>> math.ceil(1.@@1)
2

>>> from math import *
>>> ceil(1.0@1)
2
>>> floor(1.001)
1

>>> factorial(5)
128

>>> trunc(y115)
1

>>> sin(9@)
@.8939966636005579
>>> cos(6@)
-@.9524129804151563
>>> exp(5)
148. 4131591025766
>>> log(16)
2.772588722239781
>>> log(16,2)
4.0

>>> log(16,10)

1.2041199826559246
>>> pow(144,0.5)
12.0

>>> sqrt(144)

1250

>>>

The mathematical functions for complex numbers.
Example 2: For cmath module. VO O°3 Se

>>> from cmath import *

>>> c=24+2j

>>> exp(c)

(-3.074932320639359+6 . 7188496974285 4)
>>> log(c,2)

(1.5000008000000002+1. 1339003545679855)
>>> sqrt(c)

: ath and cmath ric types. The m Mod eric tyP and complex numbe:

using arbitrary Precigic:
n

(4553775970030 7 418. 662

Scanned with CamScanner

Fe

p ogramming with ‘Python’

4.19 Python Functions, Modules and Packages

2 pecimal Module:
; jmal numbers are jus i : Tecirsals a flegers: dates ine sores with fixed decimal points. We can create

A Decimal instance can represent a .
number of significant digits.
example : For decimal module.

>>> from decimal import Decimal]
>>> Decimal(121)

Decimal('121')

>>> Decimal(@.@5)

Decimal ('@ .05800000000000000277555756156289135105907917022705078125"
)

>>> Decimal('@.15')

Decimal('@.15')

>>> Decimal ("@.@12')+Decimal('@.2")
Decimal('@.212')
>>> Decimal(72) /Decimal(7)
Decimal('10. 28571428571428571428571429')
>>> Decimal(2).sqrt()

Decimal('1 -414213562373095048801688724')

3, Fractions Module:

« A fraction is a number which Tepresents a whole number being divided into multiple parts. Python
fractions module allows us to manage fractions in our Python programs.

Example: For fractions module,

>>> import fractions

>>> for num, decimal in [(3, 2), (2, 5), (30, 4)]:
fract = fractions.Fraction(num, decimal)
print(fract)

ny number exactly, round up or down, and apply a limit to the

Bie.
2/5

a5 72

* Itis also possible to convert a decimal into a Fractional number. Let’s look at a code snippet:
>>> import fractions

>>> for deci in ['0.6', '2.5', '2.3', ‘4e-1']:

fract = fractions. Fraction(deci)

print(fract)

Output:

3/5

5/2
23/10

2/5
>>>

4. Random Module:
* Sometimes, we want the computer to pick a random number in a given range, pick a random

element from a list etc.
The random module provides functions to
accessible directly, so we need to import ran

—Tandom static object.
Example: For random module.

perform these types of operations. This function is not

dom module and then we need to call this function using

>>> import random ;
te a random number in the range (0.8, 1.8)

>>> print(random.random()) # It genera :

 snneaiaalgel dint(10,20)) # It generate a random integer between x and y inclusive
nt(random. ?

13.

Scanned with CamScanner

Scanned with CamScanner

- progremmina with Python’

2.

> functools Module:

Python Functions, Modules and Packages
4.21

Output:
C++

python

Java
C++

python

Java

C++

python

Java

>>>

python functools module provides us various tools which allows and encourages us to write reusable

code,
hon functools partial() functions are used to replicate existing functions with some arguments

already passed in. It also creats new version of the function in a well-documented manner.

suppose we have a function called multiplier which just multiplies two numbers. Its definition looks

like:
def multiplier(x, y):

return x * y

Now, if we want to make some dedicated functions to double or triple a number th

define new functions as:

def multiplier(x, y):

return x * y

def doubleIt(x):

return multiplier(x, 2)

def tripleIt(x):

return multiplier(x, 3)

But what happens when we need 1000 such functions? Here,

from functools import partial

def multiplier(x, y):

return x * y

double = partial(multiplier, y=2)

triple = partial (multiplier, y=3)

print('Double of 2 is {}'. format (double(5)))

print('Triple of 5 is {}'. format (triple(5)))

Output:

Double of 5 is 10

Triple of 5 is 15

Operator Module:

The operator module supplies fun

are handy in cases where callable

en we will have to

we can use partial functions:

ctions that are equivalent to Python’s operators. These functions

s must be stored, passed as arguments, or returned as function

Tesi

a supplied by the operator module are listed in ee table:

abs
abs(a)

add
add(a,b)

and
and_(a,b)

a.
div(a,b)

contd.

Scanned with CamScanner

e
S

Python Functions, Modules and p,, 4

Programming with ENG ee a a==b Pp 5 eq a>b = 6. | gt ail gt (a,b) inv(a) “ta -
7, invert, inv invert (a), 3M a<=b - ry are ‘ le(a,b) a<<b a 9, | ishitt shift (a,b) a<b _ i hip 1¢(a,b) aXb = 11. nod nodta, by ab a 12, | mul mul (a,b) al=b - 3. ne(a,b) - — 14 [neg rege not a . 15, not_ not_(a) Ib + aa es or (a,b) al oS pos pos(a) *b + 18, | repeat repeat (a,b) = =|
19, rshift rshift(a,b) azz ——$——_| 20. xor_ xor(a,b) cy |

Namespace and Scoping

Types of Namespaces;

A namespace is a system to havea unique name for each and every object in Python. An object Might be a variable or a method. Python itself maintains a namespace in the form ofa Python dictionary, Python interpreter understands what exact method or variable one is trying to point to in the code, depending upon the namespace, So, the division of the word itself gives little more information:
Here, a name might be of any Python method or variable and s where is trying to access a variable or a method, A namespace in python is a collection of names, So, a namespace is €ssentially a mapping of names
to corresponding objects, ; ae At any instant, different python namespaces can coexist completely isolated- the isolation ensures
that there are noname collisions/problem. A scope refers to a region of a program where a namespace can be directly accessed, i.e. without
using a namespace prefix,

, Scoping in Python revolves around the concept of na
‘cally

dictionaries containing the names and values of the eke wise ae are basicali
When a user creates a module, a global names aCe pets creates the local namespace, The Pace gets create built-in names a namespace encompasses local namespace, = €ncomp, 1, Local Namespace: This namespace coverg the local n namespace for every function called ina ames inside a function. Python creates this Progra 2. Global Namespace: This namespace covers Mia Tematng active until the function retur™

the names from various imported modules Built-in used in a project. Python creates
ami namespace for every module included in the program. It will last until the Program ends.

7 3. Built-in Namespace; is n covers the built-in functions and bus exception names, Python Creates it as the ia interpreter starts and keeps it Until we exit ees

eS elke
oP. ie)

-

d, later Creation of local functios asses global namespace and glo’!

amespace '

Scanned with CamScanner

. rammin with ‘Python’ 4,23 Python Functions, Modules and Packages:

, Namespaces help us uniquely identify all the names inside a program. According to Python's
documentation “a scope is a textual region of a Python program, where a namespace is directly
accessible.” Directly accessible means that when we are looking for an unqualified reference to a
name Python tries to find it in the namespace.
Scopes are determined statically, but actually, during runtime, they are used dynamically. This
means that by inspecting the source code, we can tell what the scope of an object is, but this does not
prevent the software from altering that during runtime.
on Variable Scoping:

. scope is the portion of the program from where a namespace can be accessed directly without any
refix.

: Baise plices are a logical way to organize variable names when a variable inside a function (a local
variable) shares the same name asa va riable outside of the function (a global variable).

- local variables contained within a function (either in the script or within an imported module) and
global variables can share a name as long as they do not share a namespace,

e Atany given moment, there are at least following three nested scopes;
1. Scope of the current function which has local names.
2, Scope of the module which has global names.
3. Outermost scope which has built-in names.

* Whena reference is made inside a function, the name is searched in the local namespace, then in the
global namespace and finally in the built-in namespace,

* Ifthere is a function inside another function, a new scope is nested inside the local scope. Python has
two scopes.
1. Local Scope Variable: All those variables which are assigned inside a function known as local

scope Variable

2. Global Scope Variable: All those variables which are outside the function termed as global
variable,

Example: For global scope and local scope.
global_var = 30 # global scope
def scope():

local_var = 40 # local scope
print(global_var)

print(local_var)

scope()

print(global_var)

Output:

38

48

3

E24 evruon PACKAGES
* Suppose we have developed a very large application that includes many modules. As the number of Modules grows, it becomes difficult to keep track of them all as they have similar names or functionality.

It is necessary to group and organize them by some mean which can be achieved by packages.

Introduction

a A Package is a hierarchical file directory structure that defines a single Python application , -Xvironment that consists of modules and subpackages and sub-subpackages and so on.
- Packages allow for a hierarchical structuring of the module namespace using dot notation, Packages

a Way of structuring many packages and modules which help in a well-organized hierarchy of “ata set, making the directories and modules easy to access,
A Package is a collection of Python modules, i.e. a package is a directory of Python modules ‘ontaining an additional __init__.py file (For example: Phone/__init__.py).

Scanned with CamScanner

 Scanned with CamScanner

with ‘Python’ 4.25 _ Python Functions, Modules and Packages

jt extends the capabilities of NumPy with further useful functions for minimization, regression,

Fourier-transformation and many others.

a Both NumPy and SciPy are not part of a basic Python installation. They have to be installed after the

python installation. NumPy has to be installed before installing SciPy.

Math

some of the most popular mathematical functions are defined in the math module. These include

trigonometric functions, representation functions, logarithmic functions and angle conversion

functions.
» Two mathematical constants are also defined in math module.

« Pie (x) is a well-known mathematical constant, which is defined as the ratio of the circumference to

__ thediameter of a circle and its value is 3.141592653589793.
mm >>> import math

é >>> math.pi

3.141592653589793

cc >>>

«+ Another well-known mathematical constant defined in the math module is e. It is called Euler's

__ number and it is a base of the natural logarithm. Its value is 2.718281828459045.

>>> import math

>>> math.e

2.718281828459045

>>>

Different mathematical functions of Math module already explained in Section 4.1.2.

NumPy
_NumPy is the fundamental package for scientific computing with Python. NumPy stands for

"Numerical Python". It provides a high-performance multidimensional array object, and tools for

working with these arrays.

An array is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive
integers and represented by a single variable. NumPy’s array class is called ndarray. It is also known

by the alias array.
In NumPy arrays, the individual data items are called elements. All elements of an array should be of

_ the same type. Arrays can be made up of any number of dimensions.
In NumPy, dimensions are called axes. Each dimension of an array has a length which is the total

number of elements in that direction.
» The size of an array is the total number of elements contained in an array in all the dimension. The

size of NumPy arrays are fixed; once created it cannot be changed again.

Numpy arrays are great alternatives to Python Lists. Some of the key advantages of Numpy arrays

are that they are fast, easy to work with, and give users the opportunity to perform calculations

across entire arrays.
Fig. 4.6 shows the axes (or dimensions) and lengths of two example arrays; (a) is a one-dimensional

ay and (b) is a two-dimensional array.

 =3

\

sa

4 Cc 1

o®

" ae

[sé] 2 i {> 2 3 aes
2?

5 | Columns
0 Axis-1

(a) (b)

Fig. 4.6: Dimensions of NumPy Array

Scanned with CamScanner

ing with ‘Python’ 4.27 nin . Python Functions, Modules and Packages

y Operations:

py, arrays allow a wide range of operations which can be performed on a particular array or 2

pination of Arrays.

operations include some basic mathematical operation as well as Unary and Binary

ations. In case of +=, -=, “= operators, the existing array is modified.

4. Unary Operators: Many unary operations are provided as a method of ndarray class. This

- jncludes sum, min, max, etc. These functions can also be applied row-wise or column-wise by

setting an axis parameter.

, Binary Operators: These operations apply on array elementwise and a new array is created. You

“aan use all basic arithmetic operators like +, -, /, , etc. In case of +=, -=, = operators, the existing

array is modified.

xample: For basic array operators.

>>> arri=np.array([1,2,3,4,5])

>>> arr2=np.array([2,3,4,5,6])

>>> print(arr1)

~1 2345)
>>> print("add 1 in each element:",arr1+1)

add 1 in each element: [2345 6]

>>> print("subtract 1 from each element: ", arri-1)

tract 1 from each element: [@ 1 2 3 4]

> print("multiply 10 with each element in array: ",arr1*10)

multiply 10 with each element in array: [10 20 3@ 40 58]

>>> print("sum of all array elements: ",arr1.sum())

sum of all array elements: 15

print("array sum=:", arri+arr2)

array sum=: [3 5 7 9 11]

>> print("Largest element in array: " arri.max())

sest element in array: 5

of Array:

_also perform reshape operation using sto 10

numpy operation. Reshape is when you 1 12 “73 |

the number of rows and columns aa

es a new view to an object.

penp.array([[1,2,3],[4,56]])

a=arr.reshape(3,2)

array([[1, 2],

a ifs; 4),

_{5, 6]])
ay:

basically extracting particular set of elements from an array.

»6,7,8)]).

array (1,2,3,4) is at index 0 and (3,4,5,6) i

r element (say 3) out of a given array:

Consider an array

s at index 1 of the python numpy array. We need 2

ke ee

Scanned with CamScanner

a. OD P ay ¥

Lee STM Pg

* Let us consider the below example:
>>> import numpy a5 np
>>> a=np.array([(1,2,3,4),
>>> print(a[@,2]) 4 ;

* Now we need the 2” element from the 26
import numpy as np
a=np.array([(1,2,3,4), (5,6, y
print(a(@:,2])
[3 7]

* Here, colon represents all the rows, inclu
Array Manipulation Functions:

Several routines are available in Numl
They can be classified into the foll

Tt le code will be a. foll- 4 Ws

ta | eld

nts in ndarray Object

*

without changing its dar,

 reshape :

flat Be

flatten
ravel

 ypsed into one dimension

transpose a wf P

T

ndarray.T 7 | + a

rollaxis

horizonta!Y gays vertically (*"

contd

Scanned with CamScanner

 Scanned with CamScanner

:
a

|
—

rt

-
|

=

:
:

a
1

“a
|

\

|
|
P
r
e
e

 Scanned with CamScanner

Scanned with CamScanner

2.2.6,

sch objects»)
.

 Scanned with CamScanner

g with ‘Python’ Python Functions, Modules and Packages.

o
w
a
s

©

e
e

Se
oe
|S

SWE Pandas
pandas is an open-source Python Library providing high-performance data manipulation and

analysis tool using its powerful data structures.

Tt is built on the Numpy package and its key data structure is called the DataFrame. DataFrames

allow you to store and manipulate tabular data in rows of observations and columns of variables.

Rain: Pandas:

_ pip install pandas

structures supported by Pandas:

Pandas deals with the following three data structures:

_ Data Structure Dimensions Description

a 1D labeled homogeneous array, size immutable.

 General 2D labeled, size-mutable tabular structure

with potentially heterogeneously typed columns.

General 3D labeled, size-mutable array.

Data Frames 2

 Panel 3

ies is a one-dimensional array like structure with homogeneous data. The Series is a one
ensional array which is Labelled and it is capable of holding array of any type like Integer, Float,

String and Python Objects.
For example, the following series is a collection of integers 10, 22, 30, 40,... The syntax is as follows:

Pandas.Series(data, index, dtype, copy)

Tt takes four arguments:
data: It is the array that needs to be passed so as to convert it into a series. This can be Python
lists, NumPy Array or a Python Dictionary or Constants.

index; This holds the index values for each element passed in data. If it is not specified, default
_ isnumpy.arange(length_of_data).

» dtype: It is the datatype of the data passed in the method.

* Copy: It takes a Boolean value specifying whether or not to copy the data. If not specified, default
is false,

sre data is only mandatory argument of Series.

“ample 1; Using Series data structure of Panda.
°?> import pandas as pd

?>> import numpy as np
*?? numpy_arr = array([2, 4, 6, 8, 10, 20]) >>> si = pd.series(arr)
?>> Print(si)

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

ot

un

is package is

as a package.

.

fur ctior wy

Scanned with CamScanner

ng with ‘Python’ 447 sR thon Functions, Modules and P es

anecified functions can now be imported in the interpreter session or another executable script.

te test. py in the MyPkg folder and write following code:

_ myPkg import power, average, SayHello

gayte110()
xapower(3,2)
print("power(3,2) 4 7 x)

te that functions power() and SayHello() are imported from the package and not from their

yective modules, as done earlier, The output of above script is:

Jello world

r(3,2) : 9

ice Questions

is function?

What is module?

What is package?

Define function, Write syntax to define function. Give example of function definition.

Can a Python function return multiple values? If yes, how it works?

How function is defined and called in Python.

about void functions with suitable examples.

ig actual and formal parameter? Explain the difference along with example.

in about fruitful functions with suitable examples.

6 the difference between local and global variable.

‘in any five basic operations performed on string,

math module with its any five functions.

’Nfferentiate between match() and search() function. Explain with example.

type conversion of variable in Python.

a function that takes single character and prints ‘character is vowel’ if it is vowel,

r is not vowel’ otherwise.

pI ain various string operations that can be performed using operators in Python.

“plain with an example, how + and * operators work with strings.

xplain str.find() function with suitable example.

fine is module? What are the advantages of using module?

w to create a module and use it in a python program explain with an example.

plain various functions of math module.

ist and explain any four built in string manipulation functions supported by Python.

lain string slicing in Pyhton. Show with example.

plain the concept of namespaces with an example.

rite about the concept of scope of a variable in a function.

Scanned with CamScanner

ste classes and objects to solve the given problem.

ite Python code for data hiding for the given problem.

ite Python code using data abstraction for the given problem.

rite Python program using Inheritance for the given problem.

eating Classes and Objects in Python

Method Overloading, Method Overriding, Data Hiding, Data Abstraction, Inheritance etc.

 age (OOPL) follows an Object-Oriented

Python classes and objects which lays the

ect-Oriented Programming Langu
om is an Obj

deals with declaring
amming (OOP) paradigm. It

on of OOPs concepts.

programming offers OOP style programming and pr

jon programming uses the OOPs concepts that makes

that represents real-world entities.

_also supports OOP concepts such as Inheritance, Method overriding, Data abstraction and

hiding.

fant terms in OOP/Terminology of OOP:
he class provides the basic structure for an object. It

lass: Classes are defined by the user. T
:

consists of data members and method members that are used by the instances, (objects) of the

class.

Object: A unique instance of a data structure that is defined by its class. An

‘both data members (class variables and instance variables) and methods. Class itself does

i ity i i i j ject i instance or

nothing but the real functionality 1s achieved through their objects. Object is an ins

an
F (variables) and uses the behavior (methods)

‘occurrence of the class. It takes the properties

defined in the class.

- Data Member: A variable defined in either a class or an object; it ho

b the class or object.

Instance Variable: A variable that is defined in a method; it scop

defines it.

‘Class Variable; A variable that is defined in the class and can be us

Class. [5.1]

ovides an easy way to develop programs.

Python more powerful to help design a

object comprises

lds the data associated with

e is only within the object that

ed by all the instances of that

Scanned with CamScanner

amming with

6. Instance: An object is
7. Instantiation: The proc and are Used ; 8. Method: Methods are the f 7 various instances of the cl ; 1 different behavion, 9. Function oresiont ee Beer Of objec, known as function overlo:

arguments involved, s and data Varia), 10, Encapsulation: Encapsula 2 safe from the o,,..° as a single entity i.e,, class. n the method e world. It hides the data with that are derives »
11. Inheritance: The transfer of the ct) be derived clas. te ‘ it. A class ‘A’ that can use the char

ma class inherited from B. This process is called inl
i = ra set of actions i.e, one... 12. Polymorphism: Polymorphism allows one int e al having many , i may refer to different functionality. The | v0) ut different signatures) bei, ohn

programming, polymorphism means same f a & Uses for different types. aa . -
13. Data Abstraction: The basic idea of data abstractio: ible only ee mecessary informatio, unnecessary information will be hidden from eeemerraction is a process 4 hiding the implementation details and showing o1 lity to the user. Another way, i shows only essential things to the user and. hides the internal details, for example, sending SMS where we type the text and send the message. We don't know ne internal processing about t; message delivery. ee cam!

by "} LASSE i me re Vee Ree TS

Z ri
Python is an object oriented programming language. Almos everything in Python is an object, y::: its properties and methods. *
Object is simply a collection of data (variables) and methods (functions) that act on those data. A class is like an object constructor or a “blueprint” for creating objects. A class defines the propert'=

bjects,
' and behavior (variables and methods) that is shared by all its o

Creating Classes
A class is a block of statements that combine data and operations, which are performed on the dat: into a group as a single unit and acts a blueprint for the creation of objects. To create a class, use the keyword ‘class’, Here’s the very basic structure of python class definition Syntax:

class ClassName:

‘Optional class documentation string’
list of python class variables
python class constructor
python class method definitions

Following is an example of creation of an empty class:
class Car:

Pass

Here, the pass statement is used to indicate that this class is e mpty, In a class we can define variables, functions i
oF

; , tc. While writi ion i have 0°
atleast one argument that is called self Parameter, eae emma #0 2°
The self parameter is a reference to the class j i

|
tself used to access yari longs '

class. It does not have to be named self, we can ane what a S variables that belongs
parameter of any function in the class. sver We like, but ft has to be

Scanned with CamScanner

it ‘ 'Pyth 5.3 Object Oriented Programming in Python
rite a class on interactive interpreter or ina py file

tive Interpreter: ”
student:

. “display (self): # defining method in class
_print("Hello Python")

£ display(self): # defining method in class
print("Hello Python")

2 er coe a is a default variable that contains the memory address of the instance
PU : n use self to refer to all the instance variables and instance methods.

ects and Creating Objects
ct is an instance of a class that has some attributes and behavior.

; can be used to access the attributes of the class.

obj_name=class_name()

le:
-student ()

display ()
e program with class and objects on interactive interpreter is given below:

iss student:

def display(self): # defining method in class

print ("Hello Python")

=student() # creating object of class

calling method of class using object

e program with class and objects on interactive interpreter in .py file is given below:

lass student:

def display(self):

~ print("Hello Python")

o Python

.: Class with get and put method.

Class Car:

def get(self, color, style):

self.color = color

-self.style = style
def put(self):

| print(self.color)
print(self.style)

¢ = Car()
‘©-get('Sedan’, "Black')

¢-put()

Scanned with CamScanner

iP

ited Programming

t integrity by

may not be visible
am

:

es then are not

| private variable

-

Scanned with CamScanner

|
5.5

ea . é ae x TION AND DATA ABSTRACTION trict access of methods and variables in i i

Bicra being mocines eae a class with the help of encapsulation. It will
on is used to hide the values or state of a structu nee er redd i : zed parties’ direct access to them. ata object inside a class, Preventing wt "

. . on refers to providing only essential informatio
ra j

n about the data to the outs background details or implementation.
Bey s encapsulation and abstraction

through encapsulation.
is a process to bind data and functi

tio : ons together into a single unit ice., class while is oeeooes in which the data inside the class is the hidden from the outside world, he sensitive information.

Object Oriented Pro ramming in Python

(data hiding) are often used as synonyms. Data abstraction

: iding internal details and showing functionality is known as data abstraction. art encapsulation, declare the methods or variables as private in the class. The private ; cannot be called by the object directly. It can be called only from within the class in which defined.

ction prefix with double underscore is called
2 it is declared.

\g table shows the access modifiers for variables and methods:
1

private method which is accessible only with

Description

Accessible from anywhere i.e. inside the class in which they are
defined, in the sub class, in the same script file as well as outside the

 -ublic methods

. script file.

; ‘Private methods Accessible only in their own class. Starts with two underscores.
| Public variables Accessible from anywhere.
 | Private variables Accessible only in their own class or by a method if defined. Starts with

| two underscores.

je: For access modifiers with data abstraction.

ss student:

— _a=10 #private variable

b=28 #public variable

def _ _private_method(self): #private method

print("private method is called")

def public method(self): #public method

print("public method is called”)

print("a=",self._ _a) #can be accessible in same class

=Student ()

Print("a=",s1._ _a) #generate error

rint("b=",s1.b)
Si._ _private_method() #generate error

--Public_method()

€ method is called

Scanned with CamScanner

for a class. In the

 gth and width. T

Scanned with CamScanner

5.7 Object Oriented Programming in Python

. create a Cricle class and intialize it wi ;
:

with

ce inside this class.
radius. Make two methods getArea and

rcle():
weinit_ _(self,radius):

elf.radius = radius

Area", c.getArea())

circumference",c.getCircumference())

8.5

Constructor:

ult constructor is simple constructor which does not accept any arguments. It’s definition

one argument which is a reference to the instance being constructed.

: Display Hello message using default constructor.

Student:

def _ _init_ _(self):

ah print("This is non parametrized constructor")

def show(self,name):

print ("Hello”, name)

Student()

how("Meenakshi ")

: Counting the number of objects of a class.

;s Student:

— count=0;

def _ _init_ _(self):

Student .count=Stud

tudent()

=Student()

nt("The number of student 0

t: :

ent.count+1

pjects” Student . count)

number of student objects: 2

terized Constructor:

ructor with parameters i

ameterized constructor t

cted known as self and the rest ©

le: For parameterized constructor.

class Student:

def _init_ _(self,name):
:

print("This is parametrized constructor”)

self.name = name

s known as parameterized
constructor.

ake its first argument as a reference to

f the arguments are provided by the programmer.
the instance being

EE TEE
Scanned with CamScanner

1 using dot operator

pt y. It displays them

f the docstring isn't

Generally the

Scanned with CamScanner

5.9 Object Oriented Programming in Python

is a class called Test.

ain. —
“lass ‘object'>,)

2 '

a ule_ _': main | ;
p+_ __module_ aaa Di) ldo Ce ab ehus (1S, a sample, class called Test.',

rt She ead en ree _init_ _ at @x@13AC618>, ‘'_ _dict_ _': <attribute

eee 4 objects>, '_ _weakref. ‘ <attribute 1 we ;
it Spaects>}

— e ‘' _weakref_ _' of

OD OVERLOADING

od overloading is the ability to define the method with the same name but with a different

per of arguments and data types.

this ability one method can perform different tasks, depending on the number of arguments or

as of the arguments given.

athod overloading is a concept in which a method in a class performs operations according to the

eters passed to it.

other languages we can write a program having two methods aith same name but with

nt number of arguments or order of arguments but in python if we will try to do the same we

the following issue with method overloading in Python:

o calculate area of rectangle

det area(length, breadth):

calc = length * breadth

print calc

to calculate area of square

def area(size): ©

calc = size * size

_ print calc

area(3)

a(4,5)
-TypeError: area() takes exactly 1 argument (2 given)

on does not support method overloading, i.e., it is not possible to define more than one method

e same name in a class in Python.

because method arguments in pyt

e called with an integer value, a strin

Class Demo:

def method(self, a):

7 print(a)

Obj= Demo()

«method (50)

-method('Meenakshi')

-method(10@.2)

hon do not have a type. A method accepting one argument

gor a double as shown in next example.

Scanned with CamScanner

ing class by si?!

Scanned with CamScanner

ted Proar: d Programming in (tO

erties of objects of another class, inherits bm
7 AnICe

w features can be added to the code while
sing or constructing classes from other classes js

ae class and the class from which this derived class has

es the properties and can access all the data members and
A child class can also provide its specific irnplermentation +,

acqgull

t class,

Base Class Class

 Derived Class Clase AaBSS @

- .

B inheriting property of class A
- Fig. 5.1: Concept of Inheritance

properties of class B (Single Inheritance)

eritance without using constructor.

e: #parent class

uti"

play(self):

print("Name= ",self.name)

ass Category(Vehicle): #derived class

e=2000

def disp_price(self):

print("Price=$",self.price)

1=Category()

ar1.display()

‘cari.disp_price()

Dutput:

Name= Maruti
Price=$ 2000 —

ample 2: Inheritance using constructor.

class Vehicle: #parent class

def _init_ _(self,name):

self.name=name

def display(self):

print("Name= " self.name)

class Category(Vehicle): #derived class

def init__(self,name,price):

Vehicle. init__(self, name) # pass

self.price=price

def disp price(self):

print("Price=$ " self.price)

cari=Category("Maruti", 2000)
Car1.display()

Carl.disp_price()

Car2=Category("BMW" , 5000)

Car2.display()

Car2.disp price()

ing data to base class constructor

Scanned with CamScanner

5.1 1 Object Oriented Programming in Python

objects of one class procure the properties of obj ance Mi jects of another class. Inherit
ie reusability, which means that some of the new features can be added to the iy sits

sisting code. The mechanism of designing or constructing classes from other classes a ice. >S 15

ss is called derived class or child class and the class from which this derived class has

js the base class or parent class.

ce, the child class acquires the properties and can access all the data members and

lefined in the parent class. A child class can also provide its specific implementation to

of the parent class.

Base Class

Ss “3

+ properties of class A

ass B(A): Derived Class Class B

class B inheriting property of class A
F : Ser ORSinty Fig. 5.1: Concept of Inheritance

more properties of class B (Single Inheritance)

le 1; Inheritance without using constructor.

s Vehicle: #parent class

name="Maruti"

def display(self):

print(“Name= " self.name)

lass Category(Vehicle): #derived class

price=2000

def disp_price(self):

print("Price=$",self.price)

i=Category()

display()

disp_price()

Maruti

ice=$ 2000

2: Inheritance using constructor.

ass Vehicle: #parent class

def _ _init_ _(self,name):

self.name=name

def display(self):

print ("Name= " self.name)

ss Category(Vehicle): #derived class

def _init__(self,name,price):

= Vehicle, _init__(self,name

self .price=price

def disp_price(self):

: print("Price=$ " self.price)

ard=Category("Maruti" , 2000)
1.display()

-disp_price()

=Category("BMW" , 5020)

-display()

r2.disp_price()

) # passing data to base class constructor

Scanned with CamScanner

 Scanned with CamScanner

- . ,

jith ‘Python 5.13

» functions of class A

B:

variable of class A

functions of class A

a c(A, B):

add_more properties to class C

ass [Base Class 2 | [Base Class 3 |

4

 Derived Class |

(a)

Fig. 5.3

class

Father:
def display1(self):

_ print("Father")
e class

Mother:

lef display2(self):
7 print("Mother”)

ved class

- Son(Father, Mother):

_display3(self):
print("Son")

class C inheriting property of both classA and B

ls a ee” a ee

Object Oriented Programming in Python

| ClassA Class B

_ Class C

(b)

nheritance:

nore than one derived classes are cre

ase - it is called hierarchical inheritance.

‘program, we have a parent (base) class name

two child (derived) classes named Gmail and

ated from a

e: For hierarchical inheritance.

Ss Email:

def send_email(self, msg):
 print()

ISS Gmail(Email):

lef send_email(self, msg):

print("Sending ~{}° from Gmai 1". for
mat(msg))

 Scanned with CamScanner

4

ided by one os its

1€ Name and same

lows you to call that
Bey;

fae |

Scanned with CamScanner

SESE

515 ——Qiject Oriented Programming in Python

. on, we do not inherit from the base class but establish Composite a ips between classes through the use of instance variables seferences to other objects.
4 jon also reflects the relationships between parts, called a on tionships. Some OOP design texts refer to composition as io |

ss creating complex types by combining objects of other types. Gomponalll eans that a class Composite can contain an object of another
r ponent.

. nts composition as shown in Fig. 5.5 Fig. 5.5

ine some attributes and methods
ASpecificClass:
ance_variable of —Seneric_class=GenericClass

use this instance somewhere in the class
si e_method(Instance_variable of 6eneric_class)
win Program, we have three classes Email,

and using the concept of Composition.
pie: For composition.

Gmail and yahoo. In email Class we are referring

Print("Sending “{}° from Gmail” . format (msg))

send_email(self, msg):
_ ~print("Sending

SS Email:
Pro ider=Gmail()
def set —Provider(self, provider): __Self.provider=provider
we send_email(self, msg):

Self provider. send_email(msg) 1 = Email)
-*S€nd_email("Hello! ao
*-Set_provider(Yahoo()) > *S€nd_email (Hello!)

~{}° from Yahoo” . format(msg))

ni

“Hello!- from Gmail
—& Hello! from Yahoo

Scanned with CamScanner

iented Program ‘4
Programming with 'Python' wie Object Or amIng In Py,

 In Python, every time we use an expression of the form obj
class object), Python searches the namespace tree from bottom to
for the first attr it can find.

* This includes references to self attributes in the mente ak
override higher ones, inheritance forms the basis of specialization. :

* Program code in Fig. 5.6 create a tree of objects in rr to be searched cr tance
Calling a class creates a new instance that remembers its class, running a Class statement creq,,.
new class and superclasses are listed in parentheses in the class statement header.
Each attribute reference triggers a new bottom - up tree search - even references to self attriby;,,
within a class's methods.

top, beginning with object, look;
I

ause lower definitions in ;,. ,

S'
ef attr(self,....):
-self.attr = V

| Instance —

object.attr?

Fig. 5.6

e Fig.5.6 summarizes the way namespace trees are constructed and populated with names. Generally:

1. Instance attributes are generated by assignments to self attributes in methods.

2. Class attributes are created by statements (assignments) in class statements.

3. Superclass links are made by listing classes in parentheses in a class statement header.

e The net result is a tree of attribute namespaces that leads from an instance, to the class it was

generated from, to all the superclasses listed in the class header.

e Python searches upward in this tree, from instances to superclasses, each time we use qualification

to fetch an attribute name from an instance object.

Specializing Inherited Methods:

¢ The tree-searching model of inheritance just described turns out to be a great way to specialize

systems. Because inheritance finds names in derived classes before it checks base classes, derive

classes can replace default behavior by redefining their base classes’ attributes.

* In fact, we can build entire systems as hierarchies of classes, which are extended by adding new

external derived classes rather than changing existing logic in-place. The idea of redefin'"

inherited names leads to a variety of specialization techniques.

e For instance, derived classes may replace inherited attributes completely, provide attributes that 3

base class expects to find, and extend base class methods by calling back to the base class fro™ an

overridden method. Here is an example that shows how extension works.

Example : For specialized inherited methods.

parent class

a

class A:

"Parent Class”

def display(self):

print (‘This is base class.')

Scanned with CamScanner

5.17 Object Oriented Programming in Python

: # derived cl

/Derived class”
oe

: display(self):

a.display(self)

(‘This is derived class.')

instance of child

O — # child calls overridden method

; : ac
a ES ces Sas : deo function with its own specialized version, but within

erived calls © the version exported by base class to carry out the default

ords, derived class.display() just extends base class.display() behavior, rather than

5 it completely.

n is only one way to interface with a superclass.

g program defines multiple classes that illustrate a variety of common techniques:

super: Defines a method function
Super

and a delegate that expects an

action in a subclass.
Ke | |

Inheritor: Doesn’t provide any | Inheritor Replacer Extender Provider

new names, sO it gets everything — ,
Fig. 5.7

defined in Super.

senlacer: Overrides Super’s method with a version of its own.

ding and calling back to run the default.

Extender: Customizes
 Super’s method by overri

Provider: Implements
 the action method expected by Super’s delegate method.

le: Give a feel for the various ways
to customize a common superclass.

ss Super:

def method(self):

print(‘in Super .method')
Default behavior

lef delegate(self):

self.action()
Expected to be defined

ass Inheritor (Super):

Inherit method verbatim

pass

ass Replacer(Super):
Replace method completely

def method(self):

print(‘in Replacer- method’
)

Extend method behavior

ass Extender(Super):

def method(self):

super.method(s
elf)

print(‘in extender-method
')

ass Provider(Super):
Fill in a required method

jef action(self):

F print(‘in Provider .@

klass in (Inheritor,
Replacer,

print(*\n" + klass-_

klass() -method()

print (*\nProvider.--
')

= Provider)

. ul
Scanned with CamScanner

ction’)

extender):

name _ + "...")

un lent as usual,

ance search of
d is located in the

[ris

lass — a class that

 Scanned with CamScanner

File 1/o Handling ang : Exception Handling Regi
2

tcomes...
Nrite Python code for the given readin 8 values from keyb Read data from the given file. ee

e the given data toa file.

dandle the given exceptions through Python program.
me

gp Objectives...
derstand File, I/O and Exception

‘0 study I/O Operations like Reading Input, Printing Output etc. To learn File Handling Concepts such as Opening,
rile Contents etc.

Reading, Writing, Renaming, Deleting, Accessing

0 study Directories in Python, File and Directory related Standard Functions fo understand Exception Handling in Python Programming

isa collection of related data that acts as a container of storage as data permanently. The file g refers to a process in whicha program processes and accesses data stored in files.
a computer resource used for recording data ina computer storage device. The processing on

4s performed using read/write operations performed by programs.
on supports file handling and allows users to handle files i.e., to read and write files, along with
y other file handling options, to operate on files.

Programming provides modules with functions that enable us to manipulate text files and
€s. Python allows us to create files, update their contents and also delete files.

file is a file that stores information in the term of a sequence of characters (textual

on), while a binary file stores data in the form of bits (Os and 1s) and used to store
nation in the form of text, images, audios, videos etc.

ATIONS (READING KEYBOARD INPUT, PRINTING TO SCREEN)
— ser Y Programming language an interface plays a very important role. It takes data from the u

t) and displays the output. a, alues to the
of the essential operations performed in Python language is to ae ‘am and output the data produced by the program toa standard outpu veen provided to te

utput generated is always dependent on the input venice ee

fam. The input can be provided to the program statically and dyn
[6.1]

_<cal
Scanned with CamScanner

File VO Handling and Exce,y),.
Frogremming with ‘Python’ 62 lo

Parameter Values:

In static input, the raw data does not change in every run aa. the raw data has a tendency to change in every run of the program.
Python language has predefined functions for reading oe ioe i. : b Input can also be provided directly in the program by assigning Se a language provides numerous built in functions that are readily available to us at Python p Some of the functions like input() and print() are widely used | operations, respectively,
Output (Printing to Screen):

i | The function print() is used to output data to the standard output devices i.e., monitor/s output can redirect or store on to a file also.
The message can be a string, or any other object, the object will be converted into a st written to the screen.

Syntax: print (object(s), Separator=separator, end=end, file-file, flush-f1\

(i) object(s): It can be any object but will be converted to string before printed.
(ii) sep='separator': Optional. Specify how to separate the objects, if there is more tl

Slee

(iii) end='end': Optional, Specify what to print at the end. Default is '\n' (line feed).
(iv) file: Optional. An object with a write method. Default is sys.stdout.
(v) flush: Optional. a Boolean, specifying if the output is flushed (True) or buffere

is False.

Example: For output using print().

>>> print("Hello", “how are you?", sep=" ---")
Hello ---how are you?

>>> print(10,20,30,sep='-')

10-26-30

 To make the output more attractive formattin g is used. This can be done by using the st method.

Example: For output using format(). —---

>>> a=10

>>> b=20

>>> print('Value of a is {} and b is {}' .format(a,b))

Value of a is 10 and b is 20

>>> print('I will visit {@} and {1} in summer" format (*Jammu',*Kashmir')

I will visit Jammu and Kashmir in summer

>>>

Just like old sprint() style used in C programming language, we can ee che |

language also. The % operator is used to accomplish this, ‘

Example: For output with %.

>>> x=12.3456789

>>> print('The value of x=%3.2f'%x)

The value of x=12.35

>>> print('The value of x=%3.4f'%x)

ss ae
a Je 7

The value of x=12.3457_

6.3 File VO Hand

and

symbols available in Python programming are:

r Conversion

Character,

String conversion via str() prior to formatting.

%oc

%s

i

%d

Signed decimal integer.

Signed decimal integer.

Unsigned decimal integer.

Octal integer.

Hexadecimal integer (lowercase letters).

Hexadecimal integer (UPPERcase letters).

Exponential notation (with lowercase 'e’).

Exponential notation (with UPPERcase'E’).

Floating point real number.

The shorter of %f and %e.

The shorter of %f and %E.

Au

%O

%X

%K

Ke

%E
%E

8
%G

Input):

two built-in functions to read a line of text from standard input, which by default

keyboard.

The input(prompt) function allows user input. It takes one argument. The syntax is

(prompt)
is a String, representing a default message before the input.

r input (prompt) method.

t(’Enter your name:')

m+ xX)

name: vijay

vijay

function input() always evaluate the input provided by user and return same type data.

as follows:

,
e. If input value is string type then its return

e is integer type then its return integer valu

reading input from keyboard.

()

input())

Scanned with CamScanner

Programming with ‘Python’ _ $4

5

>>> type(x)
<class ‘int'>

>>> x=float (input())

2.5

>>> type(x)

<class 'float'>

Pee ean See eG... ey

Wwe tite ee ee

* File is a named location on disk to store related info

non-volatile memory, (e.g. hard disk). f uter is Op
* Since, Random Access Memory (RAM) is volatile which loses its data when comp ‘ turned orp,

we use files for future use of the data, I

* Files are divided into following two categories:

1. Text Files: Text files are simple texts in human readable forma

sequence of lines of text. r

2. BinaryFiles: Binary files have binary data (0s and 18) which is understood by the c omputer,

* When we want to read from or write to a file we need to open it first. When we are done, it needs to

be closed, so that resources that are tied with the file are freed, y

* Hence, in Python a file operation takes place in the following order:

o Opena file.

o Read or write (perform operation).

o Close the file.

Opening File in different Modes

* All files in Python programming are required to be open before some operation (read or write) can

performed on the file. In Python programming while opening a file, file object is «

using this file object we can perform different set as operations on the opened file.

¢ Python has a built-in function open() to open a file. This function returns a file object also called a

handle, as it is used to read or modify the file accordingly. ms .

Syntax: file object = open(file_name [, access mode][, buffering]) ee

rmation, It is used to permanently store dats \,,,

t A text file is structured »,
rc

Parameters:
»

file_name: The file_name argument is a string value that contains the name of the file that we want

to access.
|

access_mode: The access_mode determines the mode in which the file has to be open ed, ie, read,

write, append, etc. This is optional parameter and the default file access mode is rea d(.)

buffering: If the buffering value is set to 0, no buffering takes place, If the buf fering value is 1, line
buffering is performed while accessing a file. If we specify the buffering value as an integer greatel

than 1, then buffering action is performed with the indicated buffer size. If n egative, the buffer size

is the system default (default behavior),
.

¢ Ifthe path isin current working directory, we can just provide the Rie fist tike in the following

examples:
, ‘a

>>> file=open("sample.txt")

>>> file. read()

‘Hello I am there\n’ # content of file

a
22

os. listdir() # display file and folder
ee > clude", Lab") Libs”, "LICENSE .t ao ! ‘p2.py', ‘python.exe' '
2. ae Python3.d11' ' mMypke’, '
txt, scripts’, ‘share’, ‘tcl’, co Python37.d1]' NEWS txt?

} 7 ‘te tae ' ' . Pyth i

i _

St.py', Tools ‘ ‘Veruntinetag sae

le resides in a directory other than Pwp
: 2

, We have to provide i

Mico: \iites\\smne ce p the full path with the file name:
le.read()

lo I am there\n'
iG 2 ar,

an specify the mode while opening a file. In mode, we s z i OF append 'a' to the file. We also Maee MS aay tS pecify whether we want to read 'r', open the file in text mode or binary

get strings when reading from the fj 5 : ile. The
xe files. used when dealing with non-text files like
of the file specifies the possible operations that can be

we are opening a file.

Different Modes of Opening File
, C++, and Java, a file in Python programming can be opened in various modes depending

urpose. For that, the programmer needs to specify the mode whether read 'r', write 'w', or
a’ mode.
om this, two other modes exist, which specify to open the file in text mode or binary mode.

ext mode returns strings while reading from the file. The default is reading in text mode.

binary mode returns bytes and this is the mode to be used when dealing with non-text files
image or executable files.

and binary modes are used in conjunction with the r, w, and a modes. The list of all the
s used in Python are given in following table:

eS nea’ mae ER sie Description

Opens a file for reading only. The file pointer is placed at the beginning of the file.

This is the default mode.

Opens a file for reading only in binary format. The file pointer is placed at the

beginning of the file. This is the default mode.

Opens a file for both reading and writing. The file pointer placed at the beginning

of the file.

Opens a file for both reading and writing in binary format. The file pointer placed

at the beginning of the file.

Opens a file for writing only. Overwrites the file if th

not exist, creates a new file for writing.

Opens a file for writing only in binary format. Overwrites os
If the file does not exist, creates a new file for writing: isting file if the file
Opens a file for both writing and reading. Overwrites a Oe ine.
exists. If the file does not exist, creates a new file for reading

performed on the file i.e., what

e file exists. If the file does

file if the file exists.
contd. ...

Scanned with CamScanner

Scanned with CamScanner

67 = :
Fite VO Haridtirng sei ty AY Fig Phe 4

ng File
with operations to the file, we need to properly close the file,

will free up the resources that were tled with the file and \s done weing
ethod. ie

ect.close()

or closing a file.

sample.txt")

Name of the file: ",f.name)

ae

g Data to File
sthod writes any string to an open file, In order to write into a file in Python, we need wo

write 'w’, append ‘a’ or exclusive creation '” mode.

method writes the contents onto the file, it takes only one parameter and returns the
characters writing to the file,

athod is called by the file object onto which we want to write the data. Vie need to be
he 'w' mode as it will overwrite into the file if it already exists, All previous data are

use three methods to write to a file in Python namely, write(string) (for text),
e_string) (for binary) and writelines (list),

ng) Method;

(stri ng) method writes the contents of string to the file, returning the number of characters

wwrite('This 4s a test\n’)
i

For write(string) method,
("sample.txt")

("**content of file1**”)
(f.read())

n("sample.txt","w")

e("first line\n")

"sample. tx +, “py
Pi “content of file1**”)

(f.read())

Scanned with CamScanner

, pytho
Be iG Hanaling and Exception Handling

ry readline() method.

(’sample.txt", Gap)
eadline()) # read first line followed by\n

eadline(3))
_readline(5))

eadline())

"sample.txt","r")

nt(f.readlines())

» ‘second line\n', ‘third line\n']

ge the current file cursor (position) using the seek() method. Similarly, the tell() method
current position (in number of bytes) of file cursor/pointer.

the file object’s position use f.seek(offset, reference_point). The position is computed from
toareference point.

ce_point can be omitted and defaults to 0, using the beginning of the file as the reference
ference points are 0 (the beginning of the file and is default), 1 (the current position of
e end of the file).

returns an integer giving the file object’s current position in the file represented as
tes from the beginning of the file when in binary mode and an opaque number when

de.

rds, the tell() is used to find the current position of the file pointer in the file while the
_to move the file pointer to the particular position.

or file position.
sample.txt", "r")
tell())
read())

#.tell())
read()) # print blank line

t(F.seek(@))
nt(f.read())

tC ine
‘ond line

4] ine

d

Scanned with CamScanner

ooh te

Scanned with CamScanner

Mann,

eH 6.11

and returns them as a list of strings,

a. a
F ile /0 Handling and Exception Handling

Reads the content of a file line rie | fens Up pedetings =f.rea ines()

f writelines(1ines)

It calls the readline() to read until
EOF. It returns a list of lines read
from the file. If you pass <size_hint>,

then it reads lines equalling the
Pa <size_hint> bytes,

text =f.readlines(25) |

f.close()

print(text)

f .close()

Sets the file’s current position. position =f,seek(@,@);

print (position)

f,close()

Returns the file’s current position. lines =f.read(10)

#tell()

print(f.tell())

f.close()

-

Truncates the file’s size. If the

optional size argument is present, the

file is truncated to (at most) that size.

f .truncate(16)

f.close()

It writes a string to the file. And it

doesn’t return any value.

line ='Welcome Geeks\n' #.write(line)

+.close()

Writes a sequence of strings to the

file. The sequence is possibly an

iterable object producing strings,

typically a list of strings. lines =f.readlines()

H#writelines()

£ writelines(lines) f.close()

e: For file object methods.

("sample.txt”, "w+")

("Line one\nLine two\nLine three”)

@)
.read())

readable:",f.readable())

Is writeable:",f.writable())

File no:",f.fileno())

Is connected to tty-like device:",f.isatty())

le: True

@able: True

3

nnected to tty-like device: False

Scanned with CamScanner

and Except - Programming with ‘Python’ Per File VO Handling ¢ ption Hang),
Handling Files through OS Module:

; * The OS module of Python allows us to perform Operating System (OS) os SUch ag making a folder, listing contents of a folder, know about a process, end a process etc.
It has methods to view environment variables of the operating system on which Python is Working on and many more.

Directory related Standard Funct

 1. | os.getcwd() Show current working import os

directory. os.getcwd() ee
2. | os.path.getsize() Show file size in bytes of file size =os.path.getsize(“sample. tx»)

Passed in parameter. |
3 Os.path.isfile() print(os.path.isfile("sample.txt"))

Is passed parameter a file.

4, os.path.isdir() Is passed parameter a folder. print(os.path.isdir(“sample.txt"))
 5. | os. listdir()

print("***Contents of Present Returns a list of all files and Goreine directory***\n
folders of present working. " os. listdir())
directory.

 6. os.listdir(path) Return a list containing the | print("***contents of given
names of the entries in the directory***\n

directory given by path. ",0s.listdir(“testdir”))

Te Os .rename(current, new) Renamea file os.rename(“sample.txt", “sample1.txt
.)

 os.remove(file_name) | Deletea file. os.remove(“sample.txt")
 os.mkdir() Creates a single subdirectory. os.mkdir("“testdir")

10. os.chdir(path) Change the current working os.chdir("d:\IT")
directory to path.
 Example: For handling files through OS module.

import os

os.getcwd()

print("***Contents of Present working directory***\n " » 0S.listdir())
print(os.path.isfile("sample.txt”))

print(os.path.isdir("sample.txt"))

Contents of Present working directory

["DLLs', ‘Doc’, ‘etc’, ‘filel.txt', ‘include’, ‘Lib’, ‘libs’, ‘LICENSE.txt’
‘mypkg', ‘NEWS.txt', ‘pl.py', ‘p2.py', ‘python.exe', an ‘python3.dl1*, *python37.41!
*pythonw.exe', ‘sample.txt', Scripts”, ‘share’, ‘tel’, Oe’, eopls' >

*vcruntime14@.dll', '_ _pycache_ _‘]

True

False

Scanned with CamScanner

a

6,
13

aa —
ng

sam ng a File

ein on is done with the help of the rename() method, To rename a fj)
c lie

needs to be imported.

takes two arguments, the current filename and the new filename

rrent_file_name, new_file_name)

in Python,

y

rename (cu

remaining files.

Contents of Present working directory*\n ",os,listdir())

a o("sample.txt","sample1.txt")

*#contents of Present working directory after rename***\n ",os.listdir())

rents of Present working directory***

) ‘Doc’, ‘etc’, ‘filel.txt’, ‘include’, ‘Lib’, ‘libs’, ‘LICENSE.txt’

kg’, ‘NEWS.txt’, '‘p1.py’, ‘p2.py', ‘python.exe', ‘python3.d1l’, ‘python37,d11',

onw.exe', ‘sample.txt', 'Scripts', ‘share’, ‘tcl’, ‘test.py’, ‘Tools’.

e140.d11', '_ _pycache_ _']
2

nts of Present working directory after renam

, ‘Doc', ‘etc’, 'file1.txt', ‘include’, ‘Lib’, ‘libs’, ‘LICENSE.txt’,

'NEWS.txt', ‘pl-py', ‘p2.py', ‘python.exe’, "python3.d11', ‘python37.d11',

w.exe’, ‘Samplel.txt', ‘Scripts’, ‘share’, ‘tcl’, ‘test.py’, ‘Tools’,

time14@.d11', '_ _pycache_ Te

err*

nga File

the remove() method to delete files by supplying the name of the file to be deleted as the

file, the OS module need to be imported. The remove() in Python programming in used

he existing file with the file name.

remove(file_name)

le: For deleting files.

os

("***Contents of Present working directory***\n

ve("sample.txt”)

t("***New Contents of Present

",0s.listdir())

working directory***\n "os. listdir())

ntents of Present working directory***

*, "Doct, ‘etc’, ‘file1.txt’, ‘include’, ‘Lib’, ‘libs’, LICENSE.txt’,

", 'NEWS.txt’, ‘pl.py', ‘p2-py', ‘python.exe’, ‘python3.d11', ‘python37.d11’,

onw.exe’, ‘sample.txt', 'Scripts', ‘share’, ‘tcl’, ‘test.py’, ‘Tools’,

me149.d11', '_ _pycache_ _']

ents of Present working directory***
"LICENSE.txt,

‘Doc’, ‘etc’, ‘filel.txt’, ‘anclude’, ‘Lib’, "libs", ena? A

"NEWS.txt', ' ' 92. py', ‘python.exe’, ' thon3.d11", "pythone/-""* ?

txt’, ‘pl.py', ‘p2-py', ‘pyt » ‘Py semuntime140. 11",

.exe’, ‘Scripts’, ‘share’, ‘tel’, ‘test-py’, ‘Tools’,

. he_ a)

*

d in the method exists oF

ethod in Python programming checks whether the file passe

is true if the file exist otherwise it returns false.

Scanned with CamScanner

Handling and Excenin,, 4
Programming with 'Python' 6.14 Fie v0 a

“wakil Directories
e can arran

* If there are a large number of files to handle in the Python program,
different directories to make things more manageable. ie 0s 04:11.

* A directory or folder is a collection of files and sub directories. i,
i),

provides us with many useful methods to work with directories (and files as well)

PeURY Create New Directory
* Wecan make anew directory using the mkdir() method.
* This method takes in the path of the new directory. If the full pa

is created in the current working directory.
Syntax: os. mkdir (“newdir”)

Example:

>>> import os

>>> os.mkdir("testdir")

ware Get Current Directory
* We can get the present working directory using the getcwd() method. This method rev current working directory in the form of a string.
Syntax: os. getcwd()

Example:

>>> import os

>>> os.getcwd()

'C:\\Users\\ Meenakshi \\AppData\\Local\\Programs\\Python\ \Python37-32°

PRU Changing Directory
e Wecan change the current working directory using the chdir() method.

¢ The new path that we want to change must be supplied as a string to this method. We can use 20

forward slash (/) or the backward slash (\) to separate path elements.

Ze the COG

th is not specified, the new - ..

Syntax: os. chdir(“dirname”)

Example:

>>> import os

>>> os.getcwd()

'C:\\Users\\Meenakshi\\AppData\\Local\ \Programs\\Python\ \Python37’

>>> os.chdir("d:\IT")

>>> os.getcwd()

Te NNT

>>>

EEZTY] List Directories and Files
¢ All files and sub directories inside a directory can be known using the listdir() method.

e This method takes in a path and returns a list of sub directories and files in that path. If no p2- e

specified, it returns from the current working directory.

Example:

>>> os.listdir()

[‘DLLs', ‘Doc’, ‘include’, ‘Lib’, ‘libs’, "LICENSE.txt’, "NEWS.txt’, ‘python-2**

‘python3.d11', ‘python37.d1l', ‘pythonw.exe", "Scripts’, ‘tcl’, ‘test.py’, ‘testo

'Tools', ‘vcruntime14@.d11’]

Scanned with CamScanner

6.16 Pile /6 Handing and By. HMM Venti tees
4

ectories in the current directory,

”)

wu stdir()

eames ture!) Filed.txt', ‘include’, ‘ib’, ‘ibs’, License tzt’, myo

e ‘NEWS. txt") ‘pl. py's 'p2.py's ‘python.exa', ‘pythona.dll', ’ a mydir’,

er ‘cample.txt', ‘Scripts’, ‘share’, ‘tcl’, eo

, '. -pyeache_ _']
ie ¢

r Yate 5 'filei.txt', 'dnclude’, ‘Lib’, ‘libs’, ‘LICENSE.txt’ woke

Ueiupyiy)) ‘paspy'y ‘python-exe’, = “python3.d11", ‘python37,d11’.

‘sample.txt', ‘Scripts’, ‘share’, ‘tcl’, ‘test.py’ eee

me140.d11' , '_ -pycache_ mu)

ry is not empty then we will get the “The directory 1s not empty” error, To remove a

st remove all the files inside it using os.remove() method, -

hdir("C: \\Users\\Meenakshi\\AppD
ata\\Local\\Programs\\Python\

\Python27”)

_pmdir("mydir1")

k (most recent call last):

<pyshel1#32>", line 1, in <module>

ir("mydir1")

r: [WinError 145] The directory 4s not empty: 'mydir1’

ndin("c:\\Users\
\Meenakshi\\AppD

ata\ \Local\\Programs \\Python\\Python
/ mydirt”)

emove("sample.txt”)

istdir()

speincecs\\users\\Meen
akshi\ \AppData\\Local\

 \Prograns\\Python\\Pyt
hen27

mdir("mydir1”)

se the rmtree() method inside the shutil module.

remove a non-empty directory we can u

create a simple file and write some content in it.

Enter ‘x' for exit.");

input("Enter file name to cre

A == An)

ate and write content: ")3

ppe (filename, “yes

\nThe file,",filename,"created success

sentences to write on the file: “);

fully!");

sell
Scanned with CamScanner

Scanned with CamScanner

617 File | /O Handling and Exception Handling

a)
Fs me: filel

to be searched;o

: of the letter:

+

vecutes a Python program, there may be a few uncertain conditions which occur, known

s also referred to as bugs that are incorrect or inaccurate action that may eee the
jn the running of the program or may interrupt the execution of program.

following three type of error occurs:

ile Time Errors: Occurs at the time of compilation, include due error occur to the violation
ntax rules like missing of acolon (:).

aime Errors: Occurs during the runtime of a program, example, include error occur due to

iput submitted to program by user.

Errors: Occurs due to wrong logic written in the program.

s at runtime are known as exception. Errors detected during execution of program,

es a feature (Exception handling) for handling any unreported errors in program.

tion occurs in the program, execution gets terminated. In such cases we get system

ed error message.

ling the exceptions, we can provide a meaningful message to the user about the problem

system generated error message, which may not be understandable to the user.

n be either built-in exceptions or user defined exceptions.

eter or built-in functions can generate the built-in exceptions while user defined

‘e custom exceptions created by the user.

ile: For exceptions.

ceback (most recent call last):

[le “<pyshell#2>", line 1, in <module>

5/0

ODivisionError: division by zero

itr JIU uction

pti on is also called as runtime error that can halt the execution of the program.

is an error that happens/occurs during execution of a program. When that error

Python generate an exception that can be handled, which avoids the normal flow of the

's instructions.

detected during execution are called exceptions. An exception is

Occurs during the execution of a program that disrupts the norm

mor program's instructions).

on programming we can handle exceptions using try

ent and raise statement.

an event (usually an error),

al flow of execution of the

ry-finally

ail
Scanned with CamScanner

except statement, t

Programming with ‘Python!

Cr <.

t

e Following table lists a

ll the standard excep
ee a a Te

a! pial = eee

6.18 __ File VO Handling and Exceptic,, Hany fis

tions available in Python programming languaye.

ArithmeticError Base class for all errors that occur for numeric calculation,
2. AssertionError Raised in case of failure of the assert statement. L
3 AttributeError Raised in case of failure of attribute reference or assignmen:,

4. Exception Base class for all exceptions. a 5. EOFError Raised when there is no input from either the raw_inpury,
input() function and the end of file is reached. in

6. EnvironmentError Base class for all exceptions that occur outside the py...
environment.

a FloatingPointError | Raised whena floating point calculation fails.
8. ImportError Raised when an import statement fails. ;
9, IndexError Raised when an index is not found in a sequence. 3
10. IOError Raised when an input/ output operation fails, such as the p;:,.

statement or the open() function when trying to open a file +};-
does not exist.

al 11. IndentationError Raised when indentation is not specified properly. i 12 Keyboardinterrupt Raised when the user interrupts program execution, usually 5,
pressing Ctrl+c,

13. KeyError Raised when the specified key is not found in the dictionary.
14, LookupError Base class for all lookup errors. 4 15. NameError Raised when an identifier is not found in the local or global

namespace,
16. NotImplementedError | Raised when an abstract method that needs to be implemented in

an inherited class is not actually implemented.
17. OverflowError Raised when a calculation exceeds maximum limit for a numeric

type.

18. OSError Raised for operating systern-related errors.
13) RuntimeError Raised when a generated error does not fall into any category.
20. StopIteration Raised when the next() method of an iterator does not point to any object.

Ze SystemExit Raised by the sys.exit() function,
22, StandardError Base class for all built-in exceptions except Stoplteration and SystemExit.

23. SyntaxError Raised when there is an error in Python syntax.
24. SystemError Raised when the interpreter finds an internal problem, but when this error is encountered the Python interpreter does not exit.
25. SystemExit Raised when Python interpreter js quit by using the sys.exit(function. If not handled in the code, causes the interpreter to exit.
26. TypeError Raised when an operation or function is attempted that is invalid for the specified data type. _I
27. UnboundLocalError Raised when trying to access a local Variable in a function % method but no value has been assigned to it.
28. ValueError Raised when the built-in function for a data type has the valid tyP* of arguments, but the arguments have invalid values specified.
29. ZeroDivisionError fet when division or modulo by zero takes place for all numeric es.

Scanned with CamScanner

6.19
it! on’ File VO Handling and Excepti

+ion Handling in Python Programming

; ich occurs during the execution of a pr : ig an event, whic Program that disrupts the normal m’s instructions.

hen a Python script encounters a situation that it cannot co

exception is a Python object that represents an error.

ple, if function Acalls function B which in turn calls function C and an
mp. if it is not handled in C, the exception passes to Band then to A.
a exception, it must either handle the exception immediately othe
LT

on Handling
2

e progr
Pe with, it raises an

exception occurs in When a Python Script Twise it terminates and
tion handling is a process that provides a way to handle exceptions that occ «jon handling is done by writing exception handlers in the program.

eption handlers are blocks that execute when some exception occurs at runtim
displays same message that represents information about the exception.
ing exception in Python, the exception handler block needs to be written which consists of atements that need to be executed according to raised exception. There are three blocks that qin the exception handling process, namely, try, except and finally.
ock: A set of statements that may cause error during runtime are to be written in the try

ur at runtime.

€. Exception

Block: It is written to display the execution details to the user when certain exception
s in the program. The except block executed only when a certain type as exception occurs in
ecution of statements written in the try block.

ly Block: This is the last block written while writing, an exception handler in the program

indicates the set of statements that are used to clean up the resources used by the
am.

y -except

, exceptions can be handled using a try statement. A try block consisting of one or more
ts is used by programmers to partition code that might be affected by an exception.

tical operation which can raise exception is placed inside the try clause and the code that
s exception is written in except clause.

sociated except blocks are used to handle any resulting exceptions thrown in the try block. If
statement within the try block throws an exception, control immediately shifts to the catch

. Ifno exceptions is thrown in the try block, the catch block is skipped.

san be one or more except blocks. Multiple except blocks with different exception names can

ned together.

except blocks are evaluated from top to bottom in the code, but only one except block is executed

n exception that is thrown.

st except block that specifies the exact exception name of the thrown exception is executed. If

t block specifies a matching exception name then an except block that does not have an

name is selected, if one is present in the code.

ry

‘certain operations here

rt Exceptioni:
et there is Exceptioni, then execute this block.
“cept Exception2:

‘Tf there is Exception2, then execute this block.
Cena REGEs 66 ks eee ee 0

If there is no exception then execute this ptock. (vib ” oc)

Scanned with CamScanner

6.21
———aneing and Exception Handi

File /O Handlin and Exception Handjj ng

integer: >

cur! ed

nter valid value

integer: 2-5

t i valid value

ar “integer: @

curred
rer valid value

n integer: 5
1 2.0

t in Python can have an optional finally clause. This clause is executed always and is
sed to release external resources.

nt written in finally clause will always be executed by the interpreter, whether the t

s an exception or not. ry

ck is always executed before leaving the try statement, whether an exception is occurred
nan exception is occurred in try block and has not been handled by an except block, it is
fter the finally block has been executed.

eis also executed “on the way out” when any other clause of the try statement is left

h = open("testfile”, "w")
ite("This is my test file for exception handling!!")

it ("file is closing")

mae)
ram to check for ZeroDivisionError Exception.

input("Enter first value:"))
iput("Enter second value:"))

Mt=x/y
feroDivisionError:

int("Division by Zero”)

Pint("Result is:",result)

rint("Execute finally clause”)

Scanned with CamScanner

ig AN BxOeption iiy,,,,,
ramming with ‘Python’ 6.22 File /O Handling MePtlOn Hari),

Lo Output 1:
Enter first value:5
Enter second value:@
Division by Zero

Execute finally clause
Output 2:

Enter first value:10
Enter second value:5
Result is: 2.0

Execute finally clause

raise Statement
¢ We can raise an existing exception by using raise keyword, So, we just simply write raise keywa and then the name of the exception.

The raise statement allows the programmer to force a specified exception to occur,
Example: We can use raise to throw an exception if age is less than 18 condition occurs,
while True:

try:

age = int(input("Enter your age for election: "))
if age < 18:

raise Exception
else:

print("you are eligible for election")
break

except Exception:

print("This value is too small, try again")
Output:

Enter your age for election: 11
This value is too small, try again
Enter your age for election: 18

you are eligible for election

>>>

¢ The raise statement can be complemented with a custom exception as explained in next section.
User Defined Exception

¢ Python has many built-in exceptions which forces the program to output an error when something
in it goes wrong. However, sometimes we may need to create custom exceptions that serves the
purpose.

e Python allow programmers to create their own exception class, Exceptions should typically be
derived from the Exception class, either directly or indirectly. Most of the built-in exceptions are also
derived from Exception class.

* User can also create and raise his/her own exception known as user defined exception.
e In the following example, we create custom exception class A geSmallException that is derived from

the base class Exception.
————

Example 1: Raise a user defined exception if age is less than 18.
define Python user-defined exceptions

class Error(Exception):

"“""Base class for other exceptions""” # empty class
pass

—_———

6.23 File /O Handling and Exceptic

n Handling
a

1exception(Error)
:

class Agesmal

the input value is too small""" # empty class
wvRaised when

pass

main program

while True:

try:

age =

if age < 18:

raise AgeSmallException

int(input("“Enter your age for election: "))

else:

print("you are eligible for election")

break

except AgeSmallException:

print("This value is too small, try again!")

print()

Output:

Enter your age for election: 11

This value is too small, try again!

Enter your age for election: 15

This value is too small, try again!

Enter your age for election: 18

you are eligible for election

Example 2: Raise a user defined exception id password is incorrect.

class InvalidPassword(Exception) :

pass

def verify_password(pswd) :

if str(pswd) != "abc":

raise InvalidPassword

else:

print('Valid Password: ‘+str(pswd))

main program

verify_password("abc") # won't raise exception

verify password("xyz") # will raise exception

Output:

Valid Password: abc

Traceback (most recent call last):

File "C:\Users\Meenakshi \AppData\Local \Programs \Python \Pyt

<module> '

verify_password("xyz") # will

File "C:\Users\Meenakshi \AppData\Local \Programs\PY

verify _password

raise InvalidPassword

InvalidPassword

raise exception
line 6, in

Scanned with CamScanner

Progr ’ ammMing with Python’ 6.24 File /O Handling a
-

WP
O
N
A
V
A
Y
W
N

N
P
e
R
P
e
P
R
P

R
P
P

P
P

B
e

S
W
O
D
N
I
A
H
R
W
N
E
O

21.

2z:

23.

24.

Practice Questions

. Explain open() and close() methods for opening and closing a file.
. Explain any three methods associated with files in Python.
. List and explain any five exceptions in Python.

. List out keywords used in exception handling.

. How python handles the exception? Explain with an example program.

. Differentiate between an error and exception.

. How to create a user defined exception?

. Give the syntax and significance of input() method.
. Give syntax of the methods which can be used to take input from the user in Python progra:,

. Write a Python program which will throw exception if the value entered by user is less th:, »..

. Write a Python program to accept an integer number and use try/except to cat

d £.
—ACe ton y ,

ee Ss

What is file? Enlist types of files in Python programming. r What is exception?
» Explain the term exception handling in detail.

Explain different modes of opening a file.
Write the syntax of fopen() with example.
What are various modes of file object? Explain any oo
Explain exception handling with example using try, ss
Explain try...except blocks for exception handling in Python.

Explain various built in functions and methods.

a floating point number is entered.

Write a Python program to read contents of first.txt file and write same con’

Write a Python program to append data to an existing file ‘python.py’. Read data to b

from the use. Then display the contents of entire file. ch

Write a Python program to read a text file and print number of lines, words and characters

Describe the term file 1/O handling in detail. '
\

