
MSBTE
NOTES

PRESENTS

Best notes on msbte notes free

Course Outcome (CO): Display message on screen using Python Script on IDE.

Unit 1: Introduction and syntax of python programming

Python is developed by Guido van Rossum. Guido van Rossum started implementing

Python in 1989.

Features of python –

Python is Interactive –

You can actually sit at a Python prompt and interact with the interpreter directly to

write your programs.

Python is Object-Oriented –

Python supports object oriented language and concepts of classes and objects come into

existence.

Python is Interpreted

Python is an interpreted language i.e. interpreter executes the code line by line at a

time. This makes debugging easy and thus suitable for beginners.

Python is Platform Independent

Python can run equally on different platforms such as Windows, Linux, Unix and

Macintosh etc. So, we can say that Python is a portable language.

Course Outcome (CO): Display message on screen using Python Script on IDE.

Python building blocks

Python Identifiers

Variable name is known as identifier.

The rules to name an identifier are given below.

o The first character of the variable must be an alphabet or underscore (_).

o All the characters except the first character may be an alphabet of lower-case(a-z),

upper-case (A-Z), underscore or digit (0-9).

o Identifier name must not contain any white-space, or special character (!, @, #, %, ^,

&, *).

o Identifier name must not be similar to any keyword defined in the language.

o Identifier names are case sensitive for example my name, and MyName is not the

same.

o Examples of valid identifiers : a123, _n, n_9, etc.

o Examples of invalid identifiers: 1a, n%4, n 9, etc.

Assigning single value to multiple variables

Eg: x=y=z=50

Assigning multiple values to multiple variables:

Course Outcome (CO): Display message on screen using Python Script on IDE.

Eg: a,b,c=5,10,15

Reserved Words

The following list shows the Python keywords. These are reserved words and cannot use

them as constant or variable or any other identifier names. All the Python keywords

contain lowercase letters only.

Indentation

Python provides no braces to indicate blocks of code for class and function definitions or

flow control. Blocks of code are denoted by line indentation, which is compulsory.

The number of spaces in the indentation is variable, but all statements within the block

must be indented the same amount. For example −

if True:

 print "True"

else:

 print "False"

Thus, in Python all the continuous lines indented with same number of spaces would form

a block.

Course Outcome (CO): Display message on screen using Python Script on IDE.

Variable Types

Variables are used to store data, they take memory space based on the type of value we

assigning to them. Creating variables in Python is simple, you just have write the variable

name on the left side of = and the value on the right side.

Python Variable Example

num = 100
str = "BeginnersBook"
print(num)
print(str)

Multiple Assignment Examples

We can assign multiple variables in a single statement like this in Python.

x = y = z = 99
print(x)
print(y)
print(z)

Another example of multiple assignments

a, b, c = 5, 6, 7
print(a)
print(b)
print(c)

Plus and concatenation operation on the variables

x = 10
y = 20
print(x + y)

p = "Hello"
q = "World"
print(p + " " + q)

Course Outcome (CO): Display message on screen using Python Script on IDE.

output:

30

Hello World

Comments

Use the hash (#) symbol to start writing a comment.

1. #This is a comment
2. #print out Hello
3. print('Hello')

Multi-line comments

use triple quotes, either ''' or """.

eg:

1. """This is also a
2. perfect example of
3. multi-line comments"""

Data Types

A data type defines the type of data, for example 123 is an integer data while “hello” is a
String type of data. The data types in Python are divided in two categories:
1. Immutable data types – Values cannot be changed.
2. Mutable data types – Values can be changed

Immutable data types in Python are:
1. Numbers
2. String
3. Tuple

Mutable data types in Python are:
1. List
2. Dictionaries

3. Sets

Python Environment Setup-Installation and Working Of IDE

https://beginnersbook.com/2018/02/python-numbers/
https://beginnersbook.com/2018/02/python-strings/
https://beginnersbook.com/2018/02/python-tuple/
https://beginnersbook.com/2018/02/python-list/
https://beginnersbook.com/2019/03/python-dictionary/

Course Outcome (CO): Display message on screen using Python Script on IDE.

Install Python on any operating system such as Windows, Mac OS X, Linux/Unix and others.

To install the Python on your operating system, go to this
link: https://www.python.org/downloads/. You will see a screen like this.

1. On Windows 7 and earlier, IDLE is easy to start—it‘s always present after a Python
install, and has an entry in the Start button menu for Python in Windows 7 and earlier.

2. Select it by right-clicking on a Python program icon, and launch it by clicking on the icon
for the files idle.pyw or idle.py located in the idlelib subdirectory of Python‘s Lib directory.
In this mode, IDLE is a clickable Python script that lives in C:\Python3.6\..

Running Simple Python Scripts To Display ‘Welcome’ Message

https://www.python.org/downloads/

Course Outcome (CO): Display message on screen using Python Script on IDE.

Python data types : numbers ,string, tuples, lists, dictionary.

Python Data Types

1 Python Data Type – Numeric

2 Python Data Type – String

3 Python Data Type – List

4 Python Data Type – Tuple

5 Dictionary

Declaration and use of data types

Python Data Type – Numeric

Python numeric data type is used to hold numeric values like;

 int – holds signed integers of non-limited length.

 long- holds long integers(exists in Python 2.x, deprecated in Python 3.x).

 float- holds floating precision numbers and it’s accurate upto 15 decimal places.

 complex- holds complex numbers.

Course Outcome (CO): Display message on screen using Python Script on IDE.

Python Data Type – String

The string is a sequence of characters. Python supports Unicode characters. Generally,
strings are represented by either single or double quotes.

Course Outcome (CO): Display message on screen using Python Script on IDE.

Python Data Type – List

List is an ordered sequence of some data written using square brackets ([]) and commas (,).

Course Outcome (CO): Display message on screen using Python Script on IDE.

Python Data Type – Tuple

Tuple is another data type which is a sequence of data similar to list. But it is immutable.
That means data in a tuple is write protected. Data in a tuple is written using parenthesis
and commas.

Course Outcome (CO): Display message on screen using Python Script on IDE.

Dictionary

Python Dictionary is an unordered sequence of data of key-value pair form. It is similar to
the hash table type. Dictionaries are written within curly braces in the form key: value.

https://www.journaldev.com/14401/python-dictionary

Course Outcome (CO): Display message on screen using Python Script on IDE.

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

UNIT 2: PYTHON OPERATORS AND CONTROL FLOW STATEMENTS

BASIC OPERATORS:

o Arithmetic operators

 +(addition) - (subtraction) *(multiplication)

 /(divide) %(reminder) //(floor division) exponent (**)

o Comparison operators

== != <= >= > <

o Assignment Operators

= += -= *= %= **= //=

o Logical Operators

and or not

o Bitwise Operators

& (binary and) | (binary or) ^ (binary xor)

<< (left shift) >> (right shift) ~ (negation)

o Membership Operators

in not in

o Identity Operators

is is not

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

1. Arithmetic operators

Operator Description

+ (Addition) It is used to add two operands. For example, if a = 20, b = 10 => a+b = 30

- (Subtraction) It is used to subtract the second operand from the first operand. If the first

operand is less than the second operand, the value result negative. For

example, if a = 20, b = 10 => a - b = 10

/ (divide) It returns the quotient after dividing the first operand by the second

operand. For example, if a = 20, b = 10 => a/b = 2

* (Multiplication) It is used to multiply one operand with the other. For example, if a = 20, b =

10 => a * b = 200

% (reminder) It returns the reminder after dividing the first operand by the second

operand. For example, if a = 20, b = 10 => a%b = 0

** (Exponent) It is an exponent operator represented as it calculates the first operand

power to second operand.

// (Floor

division)

It gives the floor value of the quotient produced by dividing the two

operands.

2. Comparison/Relational operators

Operator Description

== If the value of two operands is equal, then the condition becomes true.

!= If the value of two operands is not equal then the condition becomes true.

<= If the first operand is less than or equal to the second operand, then the condition

becomes true.

>= If the first operand is greater than or equal to the second operand, then the condition

becomes true.

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

> If the first operand is greater than the second operand, then the condition becomes

true.

< If the first operand is less than the second operand, then the condition becomes true.

3. Assignment operator

Operator Description

= It assigns the the value of the right expression to the left operand.

+= It increases the value of the left operand by the value of the right operand and

assign the modified value back to left operand. For example, if a = 10, b = 20 => a+

= b will be equal to a = a+ b and therefore, a = 30.

-= It decreases the value of the left operand by the value of the right operand and

assign the modified value back to left operand. For example, if a = 20, b = 10 => a- =

b will be equal to a = a- b and therefore, a = 10.

*= It multiplies the value of the left operand by the value of the right operand and

assign the modified value back to left operand. For example, if a = 10, b = 20 => a*

= b will be equal to a = a* b and therefore, a = 200.

%= It divides the value of the left operand by the value of the right operand and assign

the reminder back to left operand. For example, if a = 20, b = 10 => a % = b will be

equal to a = a % b and therefore, a = 0.

= a=b will be equal to a=a**b, for example, if a = 4, b =2, a**=b will assign 4**2 = 16

to a.

//= A//=b will be equal to a = a// b, for example, if a = 4, b = 3, a//=b will assign 4//3

= 1 to a.

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

4. Logical operators

Operator Description

and If both the expression are true, then the condition will be true. If a and b are the

two expressions, a → true, b → true => a and b → true.

or If one of the expressions is true, then the condition will be true. If a and b are

the two expressions, a → true, b → false => a or b → true.

not If an expression a is true then not (a) will be false and vice versa.

5. Bitwise operators

The bitwise operators perform bit by bit operation on the values of the two operands.

For example,

if a = 7;

 b = 6;

then, binary (a) = 0111

 binary (b) = 0011

hence, a & b = 0011

 a | b = 0111

 a ^ b = 0100

 ~ a = 1000

Operator Description

& (binary

and)

If both the bits at the same place in two operands are 1, then 1 is copied to

the result. Otherwise, 0 is copied.

| (binary or) The resulting bit will be 0 if both the bits are zero otherwise the resulting

bit will be 1.

^ (binary

xor)

The resulting bit will be 1 if both the bits are different otherwise the

resulting bit will be 0.

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

~ (negation) It calculates the negation of each bit of the operand, i.e., if the bit is 0, the

resulting bit will be 1 and vice versa.

<< (left shift) The left operand value is moved left by the number of bits present in the

right operand.

>> (right

shift)

The left operand is moved right by the number of bits present in the right

operand.

6. Membership operators

Python membership operators are used to check the membership of value inside a Python
data structure. If the value is present in the data structure, then the resulting value is true
otherwise it returns false.

Operator Description

in It is evaluated to be true if the first operand is found in the second operand (list,

tuple, or dictionary).

not in It is evaluated to be true if the first operand is not found in the second operand

(list, tuple, or dictionary).

7. Identity Operators

Operator Description

is It is evaluated to be true if the reference present at both sides point to the same

object.

is not It is evaluated to be true if the reference present at both side do not point to the

same object.

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

8. Python Operator Precedence

The precedence of the operators is important to find out since it enables us to know
which operator should be evaluated first. The precedence table of the operators in
python is given below.

Operator Description

** The exponent operator is given priority over all the others used in the

expression.

~ + - The negation, unary plus and minus.

* / % // The multiplication, divide, modules, reminder, and floor division.

+ - Binary plus and minus

>> << Left shift and right shift

& Binary and.

^ | Binary xor and or

<= < > >= Comparison operators (less then, less then equal to, greater then, greater

then equal to).

<> == != Equality operators.

= %= /= //= -=

+=

*= **=

Assignment operators

is is not Identity operators

in not in Membership operators

not or and Logical operators

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

2.2 control flow:

2.3conditional statements (if,if…..else,nested if)

The if statement

The if statement is used to test a particular condition and if the condition is true, it executes
a block of code known as if-block. The condition of if statement can be any valid logical
expression which can be either evaluated to true or false.

The syntax of the if-statement is given below.

 if expression:

 statement

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

Example

Example 2 : Program to print the largest of the three numbers.

The if-else statement

The if-else statement provides an else block combined with the if statement which is
executed in the false case of the condition.

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

If the condition is true, then the if-block is executed. Otherwise, the else-block is executed.

The syntax of the if-else statement is given below.

if condition:

 #block of statements

else:

 #another block of statements (else-block)

Example 1 : Program to check whether a person is eligible to vote or not.

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

Example 2: Program to check whether a number is even or not.

The elif statement

The elif statement enables us to check multiple conditions and execute the specific block of
statements depending upon the true condition among them.

However, using elif is optional.

The syntax of the elif statement is given below.

if expression 1:

 # block of statements

elif expression 2:

 # block of statements

elif expression 3:

 # block of statements

else:

 # block of statements

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

Example 1

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

Example 2

2.4looping in python (while loop,for loop,nested loops)

There are the following advantages of loops in Python.

1. It provides code re-usability.

2. Using loops, we do not need to write the same code again and again.

3. Using loops, we can traverse over the elements of data structures (array or linked

lists).

There are the following loop statements in Python.

Loop
Statement

Description

for loop The for loop is used in the case where we need to execute some part of the code

until the given condition is satisfied. The for loop is also called as a per-tested

loop. It is better to use for loop if the number of iteration is known in advance.

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

while loop The while loop is to be used in the scenario where we don't know the number of

iterations in advance. The block of statements is executed in the while loop until

the condition specified in the while loop is satisfied. It is also called a pre-tested

loop.

do-while

loop

The do-while loop continues until a given condition satisfies. It is also called post

tested loop. It is used when it is necessary to execute the loop at least once

(mostly menu driven programs).

Python for loop

The for loop in Python is used to iterate the statements or a part of the program several
times. It is frequently used to traverse the data structures like list, tuple, or dictionary.

The syntax of for loop in python is given below.

for iterating_var in sequence:

 statement(s)

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

example : printing the table of the given number

Nested for loop in python

Python allows us to nest any number of for loops inside a for loop.

The inner loop is executed n number of times for every iteration of the outer loop.

The syntax of the nested for loop in python is given below.

for iterating_var1 in sequence:

 for iterating_var2 in sequence:

 #block of statements

#Other statements

Example 1

n = int(input("Enter the number of rows you want to print?"))

i,j=0,0

for i in range(0,n):

 print()

 for j in range(0,i+1):

 print("*",end="")

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

Output:

Enter the number of rows you want to print?5
*
**

Using else statement with for loop

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

Example 2

Python while loop

while expression:

 statements

Example 1

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

Example 2:

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

Using else with Python while loop

The else block is executed when the condition given in the while statement becomes false.

if the while loop is broken using break statement, then the else block will not be executed
and the statement present after else block will be executed.

Consider the following example.

2.5loop manipulation using continue, pass, break, else

Python continue Statement

The continue statement in python is used to bring the program control to the beginning of
the loop.

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

The continue statement skips the remaining lines of code inside the loop and start with the
next iteration.

It is mainly used for a particular condition inside the loop so that we can skip some specific
code for a particular condition.

The syntax of Python continue statement is given below.

1. #loop statements

2. continue;

3. #the code to be skipped

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

Example 2

Python Pass

In Python, pass keyword is used to execute nothing;

It means, when we don't want to execute code, the pass can be used to execute empty.

It is same as the name refers to.

Python Pass Syntax

pass

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

Python break statement

The break statement breaks the loops one by one, i.e., in the case of nested loops, it breaks
the inner loop first and then proceeds to outer loops.

break is used to abort the current execution of the program and the control goes to the next
line after the loop.

The break is commonly used in the cases where we need to break the loop for a given
condition.

The syntax of the break is given below.

#loop statements

break;

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

CO: DEVELOP PYTHON PROGRAM TO DEMONSTRATE USE OF OPERATORS

M M POLYTECHNIC ,THERGAON

Python else statement
The else block is executed when the condition given in the loop statement becomes false.

CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON

MM Polytechnic,Thergaon Pune

UNIT 3: DATA STRUCTURES IN PYTHON

Python List

 List in python is implemented to store the sequence of various type of data

 A list can be defined as a collection of values or items of different types.

 The items in the list are separated with the comma (,) and enclosed with the square brackets [].

A list can be defined as follows.

1. L1 = ["MMP", 102, "USA"]

2. L2 = [1, 2, 3, 4, 5, 6]

3. L3 = [1, "GAD"]

Accessing List

The elements of the list can be accessed by using the slice operator [].

The index starts from 0 and goes to length - 1.

The first element of the list is stored at the 0th index, the second element of the list is stored at the 1st index, and
so on.

Consider the following example.

Updating List values

Lists are the most versatile data structures in python since they are immutable and their values can be updated by
using the slice and assignment operator.

List = [1, 2, 3, 4, 5, 6]

CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON

MM Polytechnic,Thergaon Pune

print(List)

Output :[1, 2, 3, 4, 5, 6]

List[2] = 10;

print(List)

Output: [1, 2, 10, 4, 5, 6]

List[1:3] = [89, 78]

print(List)

Output : [1, 89, 78, 4, 5, 6]

Deleting List values

The list elements can also be deleted by using the del keyword. Python also provides us the remove() method if we
do not know which element is to be deleted from the list.

Consider the following example to delete the list elements.

List = [0,1,2,3,4]

print(List)

Output:

[0, 1, 2, 3, 4]

del List[0]

print(List)

Output:

 [1, 2, 3, 4]

del List[3]

print(List)

Output:

[1, 2, 3]

CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON

MM Polytechnic,Thergaon Pune

Python List Built-in functions

Python provides the following built-in functions which can be used with the lists.

SN Function Description

1 cmp(list1, list2) It compares the elements of both the lists.

2 len(list) It is used to calculate the length of the list.

3 max(list) It returns the maximum element of the list.

4 min(list) It returns the minimum element of the list.

5 list(seq) It converts any sequence to the list.

Python List Operations

The concatenation (+) and repetition (*) operator work in the same way as they were working with the strings.

Consider a List l1 = [1, 2, 3, 4] and l2 = [5, 6, 7, 8]

Operator Description Example

Repetition The repetition operator enables the list elements to be repeated

multiple times.

L1*2 = [1, 2, 3, 4, 1, 2,

3, 4]

Concatenation It concatenates the list mentioned on either side of the operator. l1+l2 = [1, 2, 3, 4, 5, 6,

7, 8]

Membership It returns true if a particular item exists in a particular list

otherwise false.

print(2 in l1) prints

True.

Iteration The for loop is used to iterate over the list elements. for i in l1:

CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON

MM Polytechnic,Thergaon Pune

 print(i)

Output

1

2

3

4

Length It is used to get the length of the list len(l1) = 4

Python Tuple

 Python Tuple is used to store the sequence of immutable python objects.

 Tuple is immutable and the value of the items stored in the tuple cannot be changed.

 A tuple can be written as the collection of comma-separated values enclosed with the small brackets.

Where use tuple

Using tuple instead of list is used in the following scenario.

1. Using tuple instead of list gives us a clear idea that tuple data is constant and must not be changed.

2. Tuple can simulate dictionary without keys. Consider the following nested structure which can be used as a
dictionary.

[(101, "CO", 22), (102, "ME", 28), (103, "AE", 30)]

3. Tuple can be used as the key inside dictionary due to its immutable nature.

A tuple can be defined as follows.

T1 = (101, "Ayush", 22)

T2 = ("Apple", "Banana", "Orange")

Accessing tuple

 The indexing in the tuple starts from 0 and goes to length(tuple) - 1.

The items in the tuple can be accessed by using the slice operator. Python also allows us to use the colon operator

to access multiple items in the tuple.

CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON

MM Polytechnic,Thergaon Pune

 The tuple items can not be deleted by using the del keyword as tuples are immutable. To delete an entire tuple,

we can use the del keyword with the tuple name

Consider the following example.

tuple1 = (1, 2, 3, 4, 5, 6)

print(tuple1)

del tuple1

print(tuple1)

Output:

(1, 2, 3, 4, 5, 6)
Traceback (most recent call last):
 File "tuple.py", line 4, in <module>
 print(tuple1)
NameError: name 'tuple1' is not defined

Basic Tuple operations

The operators like concatenation (+), repetition (*), Membership (in) works in the same way as they work with the
list. Consider the following table for more detail.

Let's say Tuple t = (1, 2, 3, 4, 5) and Tuple t1 = (6, 7, 8, 9) are declared.

Operator Description Example

Repetition The repetition operator enables the tuple elements to be repeated

multiple times.

T1*2 = (1, 2, 3, 4, 5, 1, 2,

3, 4, 5)

CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON

MM Polytechnic,Thergaon Pune

Concatenation It concatenates the tuple mentioned on either side of the

operator.

T1+T2 = (1, 2, 3, 4, 5, 6, 7,

8, 9)

Membership It returns true if a particular item exists in the tuple otherwise

false.

print (2 in T1) prints True.

Iteration The for loop is used to iterate over the tuple elements. for i in T1:

 print(i)

Output

1

2

3

4

5

Length It is used to get the length of the tuple. len(T1) = 5

Python Tuple inbuilt functions

SN Function Description

1 cmp(tuple1,

tuple2)

It compares two tuples and returns true if tuple1 is greater than tuple2 otherwise

false.

2 len(tuple) It calculates the length of the tuple.

3 max(tuple) It returns the maximum element of the tuple.

4 min(tuple) It returns the minimum element of the tuple.

5 tuple(seq) It converts the specified sequence to the tuple.

CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON

MM Polytechnic,Thergaon Pune

List VS Tuple

SN List Tuple

1 The literal syntax of list is shown by the []. The literal syntax of the tuple is shown by the ().

2 The List is mutable. The tuple is immutable.

3 The List has the variable length. The tuple has the fixed length.

4 The list provides more functionality than tuple. The tuple provides less functionality than the list.

5 The list Is used in the scenario in which we need

to store the simple collections with no

constraints where the value of the items can be

changed.

The tuple is used in the cases where we need to store

the read-only collections i.e., the value of the items can

not be changed. It can be used as the key inside the

dictionary.

Python Set

Unordered collection of various items enclosed within the curly braces.

The elements of the set can not be duplicate.

The elements of the python set must be immutable.

Creating a set

Example 1: using curly braces

Days = {"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"}

print(Days)

print(type(Days))

Output:

CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON

MM Polytechnic,Thergaon Pune

{'Friday', 'Tuesday', 'Monday', 'Saturday', 'Thursday', 'Sunday', 'Wednesday'}
<class 'set'>

Example 2: using set() method

Days = set(["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"])

print(Days)

Output:

{'Friday', 'Wednesday', 'Thursday', 'Saturday', 'Monday', 'Tuesday', 'Sunday'}

Accessing set values

Days = {"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"}

print(Days)

print("the set elements ... ")

for i in Days:

 print(i)

Output:

{'Friday', 'Tuesday', 'Monday', 'Saturday', 'Thursday', 'Sunday', 'Wednesday'}
the set elements ...
Friday
Tuesday
Monday
Saturday
Thursday
Sunday
Wednesday

Removing items from the set

Following methods used to remove the items from the set

1. discard

2. remove

3. pop

 discard() method

Python provides discard() method which can be used to remove the items from the set.

Months = set(["January","February", "March", "April", "May", "June"])

print("\nRemoving some months from the set...");

Months.discard("January");

CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON

MM Polytechnic,Thergaon Pune

Months.discard("May");

print("\nPrinting the modified set...");

print(Months)

output:
{'February', 'January', 'March', 'April', 'June', 'May'}
Removing some months from the set...
Printing the modified set...
{'February', 'March', 'April', 'June'}

 remove() method

Remove "banana" by using the remove() method:

thisset = {"apple", "banana", "cherry"}

thisset.remove("banana")

print(thisset)

output:
{"apple”, "cherry"}

 pop() method

the pop(), method to remove an item, but this method will remove the last item. Remember that sets are
unordered, so you will not know what item that gets removed.

The return value of the pop() method is the removed item.

Note: Sets are unordered, so when using the pop() method, you will not know which item that gets removed.

Example

Remove the last item by using the pop() method:

thisset = {"apple", "banana", "cherry"}

x = thisset.pop()

print(x)

print(thisset)

output:
apple
{'cherry', 'banana'}

delete the set

CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON

MM Polytechnic,Thergaon Pune

The del keyword will delete the set completely:

thisset = {"apple", "banana", "cherry"}

del thisset

print(thisset)

output:
File "demo_set_del.py", line 5, in <module>
 print(thisset) #this will raise an error because the set no longer exists
NameError: name 'thisset' is not defined

Difference between discard() and remove()

If the key to be deleted from the set using discard() doesn't exist in the set, the python will not give the error. The
program maintains its control flow.

On the other hand, if the item to be deleted from the set using remove() doesn't exist in the set, the python will
give the error.

Adding items to the set

 add() method

 update() method.

Python provides the add() method which can be used to add some particular item to the set.

Months = set(["January","February", "March", "April", "May", "June"])

Months.add("July");

Months.add("August");

print(Months)

output:
{'February', 'July', 'May', 'April', 'March', 'August', 'June', 'January'}

Months = set(["January","February", "March", "April", "May", "June"])

Months.update(["July","August","September","October"]);

print(Months)

output:
{'January', 'February', 'April', 'August', 'October', 'May', 'June', 'July', 'September', 'March'}

Python set operations (union, intersection, difference and symmetric difference)

In Python, below quick operands can be used for different operations.

| for union.
& for intersection.

CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON

MM Polytechnic,Thergaon Pune

– for difference
^ for symmetric difference

A = {0, 2, 4, 6, 8};
B = {1, 2, 3, 4, 5};

union
print("Union :", A | B)

intersection
print("Intersection :", A & B)

difference
print("Difference :", A - B)

symmetric difference
print("Symmetric difference :", A ^ B)
Output:
('Union :', set([0, 1, 2, 3, 4, 5, 6, 8]))

('Intersection :', set([2, 4]))

('Difference :', set([8, 0, 6]))

('Symmetric difference :', set([0, 1, 3, 5, 6, 8]))

Built-in Functions with Set

Built-in functions like all(), any(), enumerate(), len(), max(), min(), sorted(), sum() etc. are commonly used with set
to perform different tasks.

Function Description

all() Return True if all elements of the set are true (or if the set is empty).

any() Return True if any element of the set is true. If the set is empty, return False.

enumerate() Return an enumerate object. It contains the index and value of all the items of set as a pair.

len() Return the length (the number of items) in the set.

max() Return the largest item in the set.

https://www.programiz.com/python-programming/methods/built-in/all
https://www.programiz.com/python-programming/methods/built-in/any
https://www.programiz.com/python-programming/methods/built-in/enumerate
https://www.programiz.com/python-programming/methods/built-in/len
https://www.programiz.com/python-programming/methods/built-in/max

CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON

MM Polytechnic,Thergaon Pune

min() Return the smallest item in the set.

sorted() Return a new sorted list from elements in the set(does not sort the set itself).

sum() Retrun the sum of all elements in the set.

Dictionary

Dictionary is used to implement the key-value pair in python.

The keys are the immutable python object, i.e., Numbers, string or tuple.

Creating the dictionary

The dictionary can be created by using multiple key-value pairs enclosed with the small brackets () and separated
by the colon (:).

The collections of the key-value pairs are enclosed within the curly braces {}.

The syntax to define the dictionary is given below.

Dict = {"Name": "Ayush","Age": 22}

Accessing the dictionary values

Employee = {"Name": "John", "Age": 29, "salary":25000,"Company":"GOOGLE"}

print(Employee)

output:
{'Name': 'John', 'Age': 29, 'salary': 25000, 'Company': 'GOOGLE'}

The dictionary values can be accessed in the following way:

Employee = {"Name": "John", "Age": 29, "salary":25000,"Company":"GOOGLE"}

print("printing Employee data ")

print("Name :",Employee["Name"])

print("Age : ",Employee["Age"])

print("Salary : ",Employee["salary"])

print("Company : ", Employee["Company"])

Updating dictionary values

https://www.programiz.com/python-programming/methods/built-in/min
https://www.programiz.com/python-programming/methods/built-in/sorted
https://www.programiz.com/python-programming/methods/built-in/sum

CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON

MM Polytechnic,Thergaon Pune

Dictionary is mutable. We can add new items or change the value of existing items using assignment operator.

If the key is already present, value gets updated, else a new key: value pair is added to the dictionary.

my_dict = {'name':'MMP', 'age': 26}

update value

my_dict['age'] = 27

print(my_dict)

Output: {'age': 27, 'name': 'MMP'}

add item

my_dict['address'] = 'Downtown'

print(my_dict)

 Output: {'address': 'Downtown', 'age': 27, 'name': 'MMP'}

Deleting elements using del keyword

Employee = {"Name": "John", "Age": 29, "salary":25000,"Company":"GOOGLE"}

del Employee["Name"]

del Employee["Company"]

print("printing the modified information ")

print(Employee)

Output:

printing the modified information
{'Age': 29, 'salary': 25000}

Dictionary Operations

Below is a list of common dictionary operations:

 create an empty dictionary

x = {}

 create a three items dictionary

x = {"one":1, "two":2, "three":3}

CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON

MM Polytechnic,Thergaon Pune

 access an element

x['two']

 get a list of all the keys

x.keys()

 get a list of all the values

x.values()

 add an entry

 x["four"]=4

 change an entry

x["one"] = "uno"

 delete an entry

del x["four"]

 remove all items

x.clear()

 number of items

z = len(x)

CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON

MM Polytechnic,Thergaon Pune

 looping over keys

for item in x.keys(): print item

 looping over values

for item in x.values(): print item

Built-in Dictionary functions

The built-in python dictionary methods along with the description are given below.

SN Function Description

1 cmp(dict1,

dict2)

It compares the items of both the dictionary and returns true if

the first dictionary values are greater than the second

dictionary, otherwise it returns false.

2 len(dict) It is used to calculate the length of the dictionary.

3 str(dict) It converts the dictionary into the printable string

representation.

4 type(variable) It is used to print the type of the passed variable.

Use of Python built-in functions(e.g. type/data conversion functions, math functions , etc)
1. int(a,base) : This function converts any data type to integer. ‘Base’ specifies the base in which string is if data

type is string.

2. float() : This function is used to convert any data type to a floating point number

Python code to demonstrate Type conversion

initializing string

s = "10010"

printing string converting to int base 2

c = int(s,2)

print ("After converting to integer base 2 : ", end="")

print (c)

printing string converting to float

e = float(s)

print ("After converting to float : ", end="")

print (e)

Output:

After converting to integer base 2 : 18

After converting to float : 10010.0

3. ord() : This function is used to convert a character to integer.

4. hex() : This function is to convert integer to hexadecimal string.

5. oct() : This function is to convert integer to octal string.

initializing integer
s = '4'

printing character converting to integer
c = ord(s)
print ("After converting character to integer : ",end="")
print (c)

printing integer converting to hexadecimal string
c = hex(56)
print ("After converting 56 to hexadecimal string : ",end="")
print (c)

printing integer converting to octal string
c = oct(56)
print ("After converting 56 to octal string : ",end="")
print (c)
Output:

After converting character to integer : 52

After converting 56 to hexadecimal string : 0x38

After converting 56 to octal string : 0o70

6. tuple() : This function is used to convert to a tuple.

7. set() : This function returns the type after converting to set.

8. list() : This function is used to convert any data type to a list type.

Python code to demonstrate Type conversion
using tuple(), set(), list()

initializing string
s = 'geeks'

printing string converting to tuple
c = tuple(s)
print ("After converting string to tuple : ",end="")
print (c)

printing string converting to set
c = set(s)
print ("After converting string to set : ",end="")
print (c)

printing string converting to list
c = list(s)
print ("After converting string to list : ",end="")
print (c)
Output:

After converting string to tuple : ('g', 'e', 'e', 'k', 's')

After converting string to set : {'k', 'e', 's', 'g'}

After converting string to list : ['g', 'e', 'e', 'k', 's']

9. dict() : This function is used to convert a tuple of order (key,value) into a dictionary.
10. str() : Used to convert integer into a string.
11. complex(real,imag) : : This function converts real numbers to complex(real,imag) number.
Python code to demonstrate Type conversion
using dict(), complex(), str()

initializing integers
a = 1
b = 2

initializing tuple
tup = (('a', 1) ,('f', 2), ('g', 3))

printing integer converting to complex number

c = complex(1,2)
print ("After converting integer to complex number : ",end="")
print (c)

printing integer converting to string
c = str(a)
print ("After converting integer to string : ",end="")
print (c)

printing tuple converting to expression dictionary
c = dict(tup)
print ("After converting tuple to dictionary : ",end="")
print (c)
Output:

After converting integer to complex number : (1+2j)

After converting integer to string : 1

After converting tuple to dictionary : {'a': 1, 'f': 2, 'g': 3}

4.2 User defined functions: Function definition, function calling, function arguments and

parameter passing, Return statement, Scope of Variables: Global variable and Local variable.

the user can create its functions which can be called user-defined functions.

In python, we can use def keyword to define the function. The syntax to define a function in python is given below.

def my_function():

 function code

 return <expression>

Function calling

In python, a function must be defined before the function calling otherwise the python interpreter gives an error.
Once the function is defined, we can call it from another function or the python prompt. To call the function, use
the function name followed by the parentheses.

A simple function that prints the message "Hello Word" is given below.

def hello_world():

 print("hello world")

 hello_world()

Output:

hello world

Arguments

Information can be passed into functions as arguments.

Arguments are specified after the function name, inside the parentheses.

def hi(name):

 print(name)

hi("MMP")

Output:

MMP

def my_function(fname, lname):

 print(fname + " " + lname)

my_function("Purva","Pawar")

Output:

Purva Pawar

Arbitrary Arguments, *args

If you do not know how many arguments that will be passed into your function, add a * before the parameter
name in the function definition.

If the number of arguments is unknown, add a * before the parameter name:

def my_function(*kids):

 print("The youngest child is " + kids[1])

my_function("purva","sandesh","jiyansh")

Output

The youngest child is sandesh

If the number of keyword arguments is unknown, add a double ** before the parameter name:

def my_function(**kid):

 print("Her last name is " + kid["lname"])

my_function(fname = "nitu", lname = "mini")

Output

Her last name is mini

Default Parameter Value

If we call the function without argument, it uses the default value:

def my_function(country = "Norway"):

 print("I am from " + country)

my_function("Sweden")

my_function("India")

my_function()

my_function("Brazil")

Output

I am from Sweden

I am from India

I am from Norway

I am from Brazil

Passing a List as an Argument

def my_function(food):

 for x in food:

 print(x)

fruits = ["apple", "banana", "cherry"]

my_function(fruits)

Output

apple

banana

cherry

Return statement
def my_function(x):

 return 5 * x

print(my_function(3))

print(my_function(5))

print(my_function(9))

Output

15

25

45

Scope of Variables: Global variable and Local variable.

Local variable

A variable created inside a function belongs to the local scope of that function, and can only be used inside that
function.
A variable created inside a function is available inside that function:
def myfunc():
 x = 300
 print(x)

myfunc()
Output

300

Global variable

Global variables are available from within any scope, global and local.
A variable created outside of a function is global and can be used by anyone:
x = 300

def myfunc():
 print(x)

myfunc()

print(x)
Output
300

300
The global keyword makes the variable global.

def myfunc():

 global x

 x = 300

myfunc()

print(x)

Output
300

Modules: Writing modules

Shown below is a Python script containing the definition of SayHello() function. It is saved as hello.py.

Example: hello.py

def SayHello(name):
 print("Hello {}! How are you?".format(name))
 return

importing modules
>>> import hello

>>> hello.SayHello("purva")

Output

Hello purva! How are you?

 importing objects from modules
To import only parts from a module, by using the from keyword.

The module named mymodule has one function and one dictionary:

def greeting(name):

 print("Hello, " + name)

person1 = {

 "name": "John",

 "age": 36,

 "country": "Norway"

}

Import only the person1 dictionary from the module:

from mymodule import person1

print (person1["age"])

Output:

36

 Python built-in modules(e.g. Numeric and Mathematical module, Functional programming

module)
Python - Math Module

>>> import math

>>>math.pi

3.141592653589793

>>>math.log(10)

2.302585092994046

>>math.sin(0.5235987755982988)

0.49999999999999994

>>>math.cos(0.5235987755982988)

0.8660254037844387

>>>math.tan(0.5235987755982988)

0.5773502691896257

>>>math.radians(30)

0.5235987755982988

>>>math.degrees(math.pi/6)

29.999999999999996

Namespace and Scoping.

 A namespace is a mapping from names to objects.

 Python implements namespaces in the form of dictionaries.

 It maintains a name-to-object mapping where names act as keys and the objects as values.

 Multiple namespaces may have the same name but pointing to a different variable.

 A scope is a textual region of a Python program where a namespace is directly accessible.

 Local scope

 Non-local scope

 Global scope

 Built-ins scope

1. The local scope. The local scope is determined by whether you are in a class/function definition or not. Inside
a class/function, the local scope refers to the names defined inside them. Outside a class/function, the local
scope is the same as the global scope.

2. The non-local scope. A non-local scope is midways between the local scope and the global scope, e.g. the
non-local scope of a function defined inside another function is the enclosing function itself.

3. The global scope. This refers to the scope outside any functions or class definitions. It also known as the
module scope.

4. The built-ins scope. This scope, as the name suggests, is a scope that is built into Python. While it resides in
its own module, any Python program is qualified to call the names defined here without requiring special
access.

var1 is in the global namespace
var1 = 5
def some_func():

 # var2 is in the local namespace
 var2 = 6
 def some_inner_func():

 # var3 is in the nested local
 # namespace
 var3 = 7

Python Packages : Introduction
Python has packages for directories and modules for files. As a directory can contain sub-directories and files, a

Python package can have sub-packages and modules.

A directory must contain a file named __init__.py in order for Python to consider it as a package. This file can be

left empty but we generally place the initialization code for that package in this file.

Steps:

https://docs.python.org/3/library/builtins.html#module-builtins
https://www.programiz.com/python-programming/modules

 First create folder game.

 Inside it again create folder sound.

 Inside sound folder create load.py file.

 Inside sound folder create pause.py file.

 Inside sound folder create play.py file.

 Import package game and subpackage sound(files:load,pause,play)

Importing module from a package

import game.sound.load

Now if this module contains a function named load(), we must use the full name to reference it.

game.sound.load.load()

Math package:

>>> import math

>>>math.pi

3.141592653589793

sin, cos and tan ratios for the angle of 30 degrees (0.5235987755982988 radians):

https://www.programiz.com/python-programming/function

>>math.sin(0.5235987755982988)

0.49999999999999994

>>>math.cos(0.5235987755982988)

0.8660254037844387

>>>math.tan(0.5235987755982988)

0.5773502691896257

NumPy is a python library used for working with arrays.

NumPy stands for Numerical Python.

Why Use NumPy ?

In Python we have lists that serve the purpose of arrays, but they are slow to process.

NumPy aims to provide an array object that is up to 50x faster that traditional Python lists.

 Install it using this command:

C:\Users\Your Name>pip install numpy

Import NumPy

Use a tuple to create a NumPy array:

0-D Arrays

0-D arrays, or Scalars, are the elements in an array. Each value in an array is a 0-D array.

Create a 0-D array with value 42

1-D Arrays

An array that has 0-D arrays as its elements is called uni-dimensional or 1-D array.

These are the most common and basic arrays.

Create a 1-D array containing the values 1,2,3,4,5:

Create a 2-D array containing two arrays with the values 1,2,3 and 4,5,6:

Create a 3-D array with two 2-D arrays, both containing two arrays with the values 1,2,3 and 4,5,6:

SciPy package

SciPy, pronounced as Sigh Pi, is a scientific python open source, distributed under the BSD licensed library to

perform Mathematical, Scientific and Engineering Computations..

The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation.

SciPy Sub-packages

 SciPy consists of all the numerical code.

 SciPy is organized into sub-packages covering different scientific computing domains. These are
summarized in the following table −

scipy.cluster Vector quantization / Kmeans

scipy.constants Physical and mathematical constants

scipy.fftpack Fourier transform

scipy.integrate Integration routines

scipy.interpolate Interpolation

scipy.io Data input and output

scipy.linalg Linear algebra routines

scipy.ndimage n-dimensional image package

scipy.odr Orthogonal distance regression

scipy.optimize Optimization

scipy.signal Signal processing

scipy.sparse Sparse matrices

scipy.spatial Spatial data structures and algorithms

scipy.special Any special mathematical functions

https://docs.scipy.org/doc/scipy/reference/cluster.html#module-scipy.cluster
https://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate
https://docs.scipy.org/doc/scipy/reference/interpolate.html#module-scipy.interpolate
https://docs.scipy.org/doc/scipy/reference/io.html#module-scipy.io
https://docs.scipy.org/doc/scipy/reference/linalg.html#module-scipy.linalg
https://docs.scipy.org/doc/scipy/reference/ndimage.html#module-scipy.ndimage
https://docs.scipy.org/doc/scipy/reference/odr.html#module-scipy.odr
https://docs.scipy.org/doc/scipy/reference/optimize.html#module-scipy.optimize
https://docs.scipy.org/doc/scipy/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse
https://docs.scipy.org/doc/scipy/reference/spatial.html#module-scipy.spatial
https://docs.scipy.org/doc/scipy/reference/special.html#module-scipy.special

scipy.stats Statistics

Matplotlib is a plotting library for the Python programming language and its numerical mathematics extension
NumPy.
It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like
Tkinter, wxPython, Qt, or GTK+. ... SciPy makes use of Matplotlib.

Pandas is used for data manipulation, analysis and cleaning. Python pandas is well suited for different kinds of
data, such as:

 Tabular data with heterogeneously-typed columns

 Ordered and unordered time series data

 Arbitrary matrix data with row & column labels

 Any other form of observational or statistical data sets

https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats

Chapter 5.

Object Oriented Programming in Python

 12 Marks

Introduction:

• Python follows object oriented programming paradigm. It deals

with declaring python classes and objects which lays the

foundation of OOP’s concepts.

• Python programming offers OOP style programming and provides

an easy way to develop programs. It uses the OOP concepts that

makes python more powerful to help design a program that

represents real world entities.

• Python supports OOP concepts such as Inheritance, Method

Overriding, Data abstraction and Data hiding.

Important terms in OOP/ Terminology of OOP-

(Different OOP features supported by Python)

• Class- Classes are defined by the user. The class provides the

basic structure for an object. It consists of data members and

method members that are used by the instances(object) of the

class.

• Object- A unique instance of a data structure that is defined by

its class. An object comprises both data members and methods.

Class itself does nothing but real functionality is achieved through

their objects.

• Data Member: A variable defined in either a class or an object; it

holds the data associated with the class or object.

• Instance variable: A variable that is defined in a method, its

scope is only within the object that defines it.

• Class variable: A variable that is defined in the class and can be

used by all the instance of that class.

• Instance: An object is an instance of a class.

• Method: They are functions that are defined in the definition of

class and are used by various instances of the class.

• Function Overloading: A function defined more than one time

with different behavior. (different arguments)

• Encapsulation: It is the process of binding together the methods

and data variables as a single entity i.e. class. It hides the data

within the class and makes it available only through the methods.

• Inheritance: The transfer of characteristics of a class to other

classes that are derived from it.

• Polymorphism: It allows one interface to be used for a set of

actions. It means same function name(but different signatures)

being used for different types.

• Data abstraction: It is the process of hiding the implementation

details and showing only functionality to the user.

Classes-

• Python is OOP language. Almost everything in python is an object

with its properties and methods.

• Object is simply a collection of data(variables) and

methods(functions) that acts on those data.

Creating Classes:

A class is a block of statement that combine data and operations,

which are performed on the data, into a group as a single unit and

acts as a blueprint for the creation of objects.

Syntax:

class ClassName:

 ‘ Optional class documentation string

#list of python class variables

Python class constructor

#Python class method definitions

• In a class we can define variables, functions etc. While writing

function in class we have to pass atleast one argument that is

called self parameter.

• The self parameter is a reference to the class itself and is used to

access variables that belongs to the class.

Example: Creating class in .py file

class student:

 def display(self): # defining method in class

 print("Hello Python")

• In python programming self is a default variable that contains the

memory address of the instance of the current class.

• So we can use self to refer to all the instance variable and instance

methods.

Objects and Creating Objects-

• An object is an instance of a class that has some attributes and

behavior.

• Objects can be used to access the attributes of the class.

Example:

class student:

 def display(self): # defining method in class

 print("Hello Python")

s1=student() #creating object of class

s1.display() #calling method of class using object

Output:

Hello Python

Example: Class with get and put method

class car:

 def get(self,color,style):

 self.color=color

 self.style=style

 def put(self):

 print(self.color)

 print(self.style)

c=car()

c.get('Brio','Red')

c.put()

Output:

Brio

Red

Instance variable and Class variable:

• Instance variable is defined in a method and its scope is only

within the object that defines it.

• Every object of the class has its own copy of that variable. Any

changes made to the variable don’t reflect in other objects of that

class.

• Class variable is defined in the class and can be used by all the

instances of that class.

• Instance variables are unique for each instance, while class

variables are shared by all instances.

Example: For instance and class variables

class sample:

 x=2 # x is class variable

 def get(self,y): # y is instance variable

 self.y=y

s1=sample()

s1.get(3) # Access attributes

print(s1.x," ",s1.y)

s2=sample()

s2.y=4

print(s2.x," ",s2.y)

Output:

2 3

2 4

Data Hiding:

• Data hiding is a software development technique specifically used in object

oriented programming to hide internal object details(data members).

• It ensures exclusive data access to class members and protects object

integrity by preventing unintended or intended changes.

• Data hiding is also known as information hiding. An objects attributes may

or may not be visible outside the class definition.

• We need to name attributes with a double underscore(_ _) prefix and

those attributes the are not directly visible to outsiders. Any variable prefix

with double underscore is called private variable which is accessible only

with class where it is declared.

Example: For data hiding

class counter:

 __secretcount=0 # private variable

 def count(self): # public method

 self.__secretcount+=1

 print("count= ",self.__secretcount) # accessible in the same class

c1=counter()

c1.count() # invoke method

c1.count()

print("Total count= ",c1.__secretcount) # cannot access private variable directly

Output:

count= 1

count= 2

Traceback (most recent call last):

 File "D:\python programs\class_method.py", line 9, in <module>

 print("Total count= ",c1.__secretcount) # cannot access private variable

directly

AttributeError: 'counter' object has no attribute '__secretcount'

Data Encapsulation and Data Abstraction:

• We can restrict access of methods and variables in a class with the help of

encapsulation. It will prevent the data being modified by accident.

• Encapsulation is used to hide the value or state of a structured data object

inside a class, preventing unauthorized parties direct access to them.

• Data abstraction refers to providing only essential information about the

data to the outside world, hiding the background details of

implementation.

• Encapsulation is a process to bind data and functions together into a

single unit i.e. class while abstraction is a process in which the data inside

the class is the hidden from outside world.

• In short hiding internal details and showing functionality is known as

abstraction.

• To support encapsulation, declare the methods or variables as private in the

class. The private methods cannot be called by the object directly. It can be

called only from within the class in which they are defined.

• Any function with double underscore is called private method.

Access modifiers for variables and methods are:

• Public methods / variables- Accessible from anywhere inside the class, in

the sub class, in same script file as well as outside the script file.

• Private methods / variables- Accessible only in their own class. Starts with

two underscores.

Example: For access modifiers with data abstraction

class student:

 __a=10 #private variable

 b=20 #public variable

 def __private_method(self): #private method

 print("Private method is called")

 def public_method(self): #public method

 print("public method is called")

 print("a= ",self.__a) #can be accessible in same class

s1=student()

print("a= ",s1.__a) #generate error

print("b=",s1.b)

s1.__private_method() #generate error

s1.public_method()

 Output:

b= 20

public method is called

a= 10

Creating Constructor:

• Constructors are generally used for instantiating an object.

• The task of constructors is to initialize(assign values) to the data

members of the class when an object of class is created.

• In Python the __init__() method is called the constructor and is always

called when an object is created.

Syntax of constructor declaration :

def __init__(self):

 # body of the constructor

Example: For creating constructor use_ _init_ _ method called as

constructor.

class student:

 def __init__(self,rollno,name,age):

 self.rollno=rollno

 self.name=name

 self.age=age

 print("student object is created")

p1=student(11,"Ajay",20)

print("Roll No of student= ",p1.rollno)

print("Name No of student= ",p1.name)

print("Age No of student= ",p1.age)

Output:

student object is created

Roll No of student= 11

Name No of student= Ajay

Age No of student= 20

Programs:

Define a class rectangle using length and width.It has a method which can

compute area.

class rectangle:

 def __init__(self,L,W):

 self.L=L

 self.W=W

 def area(self):

 return self.L*self.W

r=rectangle(2,10)

print(r.area())

Output

20

Create a circle class and initialize it with radius. Make two methods

getarea and getcircumference inside this class

class circle:

 def __init__(self,radius):

 self.radius=radius

 def getarea(self):

 return 3.14*self.radius*self.radius

 def getcircumference(self):

 return 2*3.14*self.radius

c=circle(5)

print("Area=",c.getarea())

print("Circumference=",c.getcircumference())

 Output:

Area= 78.5

Circumference= 31.400000000000002

Types of Constructor:

There are two types of constructor- Default constructor and Parameterized

constructor.

Default constructor- The default constructor is simple constructor which does

not accept any arguments. Its definition has only one argument which is a

reference to the instance being constructed.

Example: Display Hello message using Default constructor(It does not accept

argument)

class student:

 def __init__(self):

 print("This is non parameterized constructor")

 def show(self,name):

 print("Hello",name)

s1=student()

s1.show("World")

 Output:

This is non parameterized constructor

Hello World

Example: Counting the number of objects of a class

class student:

 count=0

 def __init__(self):

 student.count=student.count+1

s1=student()

s2=student()

print("The number of student objects",student.count)

Output:

The number of student objects 2

Parameterized constructor- Constructor with parameters is known as

parameterized constructor.

The parameterized constructor take its first argument as a reference to the instance

being constructed known as self and the rest of the arguments are provided by the

programmer.

Example: For parameterized constructor

class student:

 def __init__(self,name):

 print("This is parameterized constructor")

 self.name=name

 def show(self):

 print("Hello",self.name)

s1=student("World")

s1.show()

 Output:

This is parameterized constructor

Hello World

Destructor:

A class can define a special method called destructor with the help of _ _del_ _().

It is invoked automatically when the instance (object) is about to be destroyed.

It is mostly used to clean up non memory resources used by an instance(object).

Example: For Destructor

class student:

 def __init__(self):

 print("This is non parameterized constructor")

 def __del__(self):

 print("Destructor called")

s1=student()

s2=student()

del s1

 Output:

This is non parameterized constructor

This is non parameterized constructor

Destructor called

Method Overloading:

• Method overloading is the ability to define the method with the same name

but with a different number of arguments and data types.

• With this ability one method can perform different tasks, depending on the

number of arguments or the types of the arguments given.

• Method overloading is a concept in which a method in a class performs

operations according to the parameters passed to it.

• As in other language we can write a program having two methods with same

name but with different number of arguments or order of arguments but in

python if we will try to do the same we get the following issue with method

overloading in python.

Example-

To calculate area of rectangle

def area(length,breadth):

 calc=length*breadth

 print(calc)

To calculate area of square

def area(size):

 calc=size*size

 print(calc)

area(3)

area(4,5)

Output-

9

Traceback (most recent call last):

 File "D:\python programs\trial.py", line 10, in <module>

 area(4,5)

TypeError: area() takes 1 positional argument but 2 were given

• Python does not support method overloading i.e it is not possible to define

more than one method with the same name in a class in python.

• This is because method arguments in python do not have a type. A method

accepting one argument can be called with an integer value, a string or a

double as shown in example.

Example-

class demo:

 def print_r(self,a,b):

 print(a)

 print(b)

obj=demo()

obj.print_r(10,'S')

obj.print_r('S',10)

 Output:

10

S

S

10

• In the above example same method works for two different data types.

• It is clear that method overloading is not supported in python but that

does not mean that we cannot call a method with different number of

arguments. There are couple of alternatives available in python that

make it possible to call the same method but with different number of

arguments.

Using Default Arguments:

It is possible to provide default values to method arguments while defining a

method. If method arguments are supplied default values, then it is not mandatory

to supply those arguments while calling method as shown in example.

Example 1: Method overloading with deafult arguments

class demo:

 def arguments(self,a=None,b=None,c=None):

 if(a!=None and b!=None and c!=None):

 print("3 arguments")

 elif (a!=None and b!=None):

 print("2 arguments")

 elif a!=None:

 print("1 argument")

 else:

 print("0 arguments")

obj=demo()

obj.arguments("Amol","Kedar","Sanjay")

obj.arguments("Amit","Rahul")

obj.arguments("Sidharth")

obj.arguments()

Output-

3 arguments

2 arguments

1 argument

0 arguments

Example 2: With a method to perform different operations using method

overloading

class operation:

 def add(self,a,b):

 return a+b

op=operation()

To add two integer numbers

print("Addition of integer numbers= ",op.add(10,20))

To add two floating numbers

print("Addition of integer numbers= ",op.add(11.12,12.13))

To add two strings

print("Addition of stings= ",op.add("Hello","World"))

Output-

Addition of integer numbers= 30

Addition of integer numbers= 23.25

Addition of stings= HelloWorld

Inheritance:

The mechanism of designing and constructing classes from other classes

is called inheritance.

Inheritance is the capability of one class to derive or inherit the properties from

some another class.

The new class is called derived class or child class and the class from which

this derived class has been inherited is the base class or parent class. The benefits

of inheritance are:

1. It represents real-world relationships well.

2. It provides reusability of a code. We don’t have to write the same code

again and again. Also, it allows us to add more features to a class without

modifying it.

3. It is transitive in nature, which means that if class B inherits from another

class A, then all the subclasses of B would automatically inherit from class

A.

Syntax:

Class A:

 # Properties of class A

Class B(A):

 # Class B inheriting property of class A

 # more properties of class B

Example 1: Example of Inheritance without using constructor

class vehicle: #parent class

 name="Maruti"

 def display(self):

 print("Name= ",self.name)

class category(vehicle): # drived class

 price=400000

 def disp_price(self):

 print("price= ",self.price)

car1=category()

car1.display()

car1.disp_price()

Output:

Name= Maruti

price= 400000

Example 2: Example of Inheritance using constructor

class vehicle: #parent class

 def __init__(self,name,price):

 self.name=name

 self.price=price

 def display(self):

 print("Name= ",self.name)

class category(vehicle): # drived class

 def __init__(self,name,price):

 vehicle.__init__(self,name,price) #pass data to base constructor

 def disp_price(self):

 print("price= ",self.price)

car1=category("Maruti",400000)

car1.display()

car1.disp_price()

car2=category("Honda",600000)

car2.display()

car2.disp_price()

Output:

Name= Maruti

price= 400000

Name= Honda

price= 600000

Multilevel Inheritance:

In multilevel inheritance, features of the base class and the derived class are further

inherited into the new derived class. This is similar to a relationship representing a

child and grandfather.

Syntax:

Class A:

 # Properties of class A

Class B(A):

 # Class B inheriting property of class A

 # more properties of class B

Class C(B):

 # Class C inheriting property of class B

 # thus, Class C also inherits properties of class A

 # more properties of class C

Example 1: Python program to demonstrate multilevel inheritance

#Mutilevel Inheritance

class c1:

 def display1(self):

 print("class c1")

class c2(c1):

 def display2(self):

 print("class c2")

class c3(c2):

 def display3(self):

 print("class c3")

s1=c3()

s1.display3()

s1.display2()

s1.display1()

Output:

class c3

class c2

class c1

Example 2: Python program to demonstrate multilevel inheritance

Base class

class Grandfather:

 grandfathername =""

 def grandfather(self):

 print(self.grandfathername)

Intermediate class

class Father(Grandfather):

 fathername = ""

 def father(self):

 print(self.fathername)

Derived class

class Son(Father):

 def parent(self):

 print("GrandFather :", self.grandfathername)

 print("Father :", self.fathername)

Driver's code

s1 = Son()

s1.grandfathername = "Srinivas"

s1.fathername = "Ankush"

s1.parent()

Output:

GrandFather : Srinivas

Father : Ankush

Multiple Inheritance:

When a class can be derived from more than one base classes this type of

inheritance is called multiple inheritance. In multiple inheritance, all the features of

the base classes are inherited into the derived class.

Syntax:

Class A:

 # variable of class A

 # functions of class A

Class B:

 # variable of class B

 # functions of class B

Class C(A,B):

 # Class C inheriting property of both class A and B

 # more properties of class C

Example: Python program to demonstrate multiple inheritance

Base class1

class Father:

 def display1(self):

 print("Father")

Base class2

class Mother:

 def display2(self):

 print("Mother")

Derived class

class Son(Father,Mother):

 def display3(self):

 print("Son")

s1 = Son()

s1.display3()

s1.display2()

s1.display1()

Output:

Son

Mother

Father

Hierarchical Inheritance:

When more than one derived classes are created from a single base this type of

inheritence is called hierarchical inheritance. In this program, we have a parent

(base) class and two child (derived) classes.

Example : Python program to demonstrate Hierarchical inheritance

Base class

class Parent:

 def func1(self):

 print("This function is in parent class.")

Derived class1

class Child1(Parent):

 def func2(self):

 print("This function is in child 1.")

Derived class2

class Child2(Parent):

 def func3(self):

 print("This function is in child 2.")

object1 = Child1()

object2 = Child2()

object1.func1()

object1.func2()

object2.func1()

object2.func3()

Output:

This function is in parent class.

This function is in child 1.

This function is in parent class.

This function is in child 2.

Method Overriding:

Method overriding is an ability of a class to change the implementation of

a method provided by one of its base class. Method overriding is thus a strict part

of inheritance mechanism.

To override a method in base class, we must define a new method with sam

name and same parameters in the derived class.

Overriding is a very important part of OOP since it is feature that makes

inheritance exploit its full power. Through method overriding a class may “copy”

another class, avoiding duplicated code and at the same time enhance or customize

part of it.

Example: For method overriding

class A:

 def display(self):

 print("This is base class")

class B(A):

 def display(self):

 print("This is derived class")

obj=B() # instance of child

obj.display() # child class overriden method

Output-

This is derived class

Using super() Method:

The super() method gives you access to methods in a super class from the

subclass that inherits from it.

The super() method returns a temporary object of the superclass that then

allows you to call that superclass’s method.

Example: For method overriding with super()

class A:

 def display(self):

 print("This is base class")

class B(A):

 def display(self):

 super().display()

 print("This is derived class")

obj=B() # instance of child

obj.display() # child class overriden method

 Output-

This is base class

This is derived class

Composition Classes:

• In composition we do not inherit from the base class but establish

relationship between classes through the use of instance variables that are

references to other objects.

• Composition means that an object knows another object and explicitly

delegates some tasks to it. While inheritance is implicit, composition is

explicit in python.

• We use composition when we want to use some aspects of another class

without promising all of the features of that other class.

 Syntax:

Class GenericClass:

 Define some attributes and methods

Class AspecificClass:

 Instance_variable_of_generic_class=GenericClass

 #use this instance somewhere in the class

 Some_method(instance_varable_of_generic_class)

• For example, we have three classes email, gmail and yahoo. In email class

we are referring the gmail and using the concept of composition.

Example:

class gmail:

 def send_email(self,msg):

 print("sending '{}' from gmail".format(msg))

class yahoo:

 def send_email(self,msg):

 print("sending '{}' from yahoo".format(msg))

class email:

 provider=gmail()

 def set_provider(self,provider):

 self.provider=provider

 def send_email(self,msg):

 self.provider.send_email(msg)

client1=email()

client1.send_email("Hello")

client1.set_provider(yahoo())

client1.send_email("Hello")

Output:

sending 'Hello' from gmail

sending 'Hello' from yahoo

Customization via Inheritance specializing inherited methods:

• The tree-searching model of inheritance turns out to be a great way to

specialize systems. Because inheritance finds names in subclasses before it

checks superclasses, subclasses can replace default behavior by redefining

the superclass's attributes.

• In fact, you can build entire systems as hierarchies of classes, which are

extended by adding new external subclasses rather than changing existing

logic in place.

• The idea of redefining inherited names leads to a variety of specialization

techniques.

• For instance, subclasses may replace inherited attributes

completely, provide attributes that a superclass expects to find,

and extend superclass methods by calling back to the superclass from an

overridden method.

Example- For specilaized inherited methods

class A:

 "parent class" #parent class

 def display(self):

 print("This is base class")

class B(A):

 "Child class" #derived class

 def display(self):

 A.display(self)

 print("This is derived class")

obj=B() #instance of child

obj.display() #child calls overridden method

Output:

This is base class

This is derived class

• In the above example derived class.display() just extends base class.display()

behavior rather than replacing it completely.

• Extension is the only way to interface with a superclass.

• The following program defines multiple classes that illustrate a variety of

common techniques.

Super

Defines a method function and a delegate that expects an action in a

subclass

 Inheritor

Doesn't provide any new names, so it gets everything defined in Super

 Replacer

Overrides Super's method with a version of its own

 Extender

Customizes Super's method by overriding and calling back to run the

default

 Provider

Implements the action method expected by Super's delegate method

Example- Various ways to customize a common superclass

class super:

 def method(self):

 print("in super.method") #default behavior

 def delegate(self):

 self.action() #expected to be defined

class inheritor(super):

 pass

class replacer(super): #replace method completely

 def method(self):

 print("in replacer.method")

class extender(super): #extend method behavior

 def method(self):

 super.method(self)

 print("in extender.method")

class provider(super): # fill in a required method

 def action(self):

 print("in provider.action“)

for klass in (inheritor,replacer,extender):

 print("\n"+klass.__name__+"...")

 klass().method()

 print("\n provider...")

x=provider()

x.delegate()

Output:

inheritor...

in super.method

 provider...

replacer...

in replacer.method

 provider...

extender...

in super.method

in extender.method

 provider...

in provider.action

• When we call the delegate method through

provider instance, two independent inheritance searches occur:

• On the initial x.delegate call, Python finds the delegate method in Super, by

searching at the provider instance and above. The instance x is passed into

the method's self argument as usual.

• Inside the super.delegate method, self.action invokes a new, independent

inheritance search at self and above. Because self references

a provider instance, the action method is located in the provider subclass.

6.1 I/O Operations: Reading keyboard input , Printing to screen

Reading Keyboard Input

Python provides two built-in functions to read a line of text from standard
input, which by default comes from the keyboard. These functions are −

 raw_input

 input

The raw_input Function

The raw_input([prompt]) function reads one line from standard input and
returns it as a string.

>>> str = raw_input("Enter your input: ")

Enter your input: mmpolytechnic

>>> print(str)

mmpolytechnic

>>>

The input Function

The input([prompt]) function is equivalent to raw_input, except that it
assumes the input is a valid Python expression and returns the evaluated
result to you.

 >>> str = input("Enter your name: ")

Enter your name: purva

Error:

NameError: name 'purva' is not defined(“for string input” instead of input
use raw_input for accepting string value from user)

>>> str = input("Enter your input: ")

Enter your input: 1

>>> print(str)

1

"6.2 File Handling: Opening file in different modes, accessing file contents

using standard library functions, Reading and writing files, closing a file,

Renaming and deleting file, Directories in python, File and related standard

functions

File handling is an important part of any web application.

Python has several functions for creating, reading, updating, and deleting files.

Opening file in different modes

The key function for working with files in Python is the open() function.

The open() function takes two parameters; filename, and mode.

There are four different methods (modes) for opening a file:

"r" - Read - Default value. Opens a file for reading, error if the file does not
exist

"a" - Append - Opens a file for appending, creates the file if it does not exist

"w" - Write - Opens a file for writing, creates the file if it does not exist

"x" - Create - Creates the specified file, returns an error if the file exists

In addition you can specify if the file should be handled as binary or text mode

"t" - Text - Default value. Text mode

"b" - Binary - Binary mode (e.g. images)

Accessing file contents using standard library functions

Open a File on the Server

Assume we have the following file, located in the same folder as Python:

Read Only Parts of the File

By default the read() method returns the whole text, but you can also specify
how many characters you want to return:

Readline

You can return one line by using the readline() method:

Calling readline() 2 times

By looping through the lines of the file, read the whole file, line by line:

Readlines

Read and return a list of lines from the file. Reads in at most n bytes/
characters if specified.

Reading and writing files

The write() Method

The write() method writes any string to an open file.

Python strings can have binary data and not just text.

The write() method does not add a newline character ('\n') to the end of the
string −

The read() Method

The read() method reads a string from an open file.

This method starts reading from the beginning of the file and if count is

missing, then it tries to read as much as possible, maybe until the end of file.

Closing a file

Python automatically closes a file when the reference object of a file is

reassigned to another file. It is a good practice to use the close() method to

close a file.

Renaming and deleting file

Python os module provides methods that help you perform file-processing

operations, such as renaming and deleting files.

To use this module you need to import it first and then call any related

functions.

The rename() Method

The rename() method takes two arguments, the current filename and the new

filename.

The remove() Method

You can use the remove() method to delete files by supplying the name of the
file to be deleted as the argument.

"6.3 Exception Handling:

An exception can be defined as an abnormal condition in a program resulting

in the disruption in the flow of the program.

Python provides us with the way to handle the Exception so that the other

part of the code can be executed without any disruption. However, if we do

not handle the exception, the interpreter doesn't execute all the code that

exists after that.

Common Exceptions

A list of common exceptions that can be thrown from a normal python

program is given below.

ZeroDivisionError: Occurs when a number is divided by zero.

NameError: It occurs when a name is not found. It may be local or global.

IndentationError: If incorrect indentation is given.

IOError: It occurs when Input Output operation fails.

EOFError: It occurs when the end of the file is reached, and yet operations are

being performed.

Exception Handling- ‘ try: except:’statement

 The try block lets you test a block of code for errors.

 The except block lets you handle the error.

 The finally block lets you execute code, regardless of the result of the

try- and except blocks.

When an error occurs, or exception as we call it, Python will normally stop

and generate an error message.

These exceptions can be handled using the try statement:

Using multiple exceptions:

try:

 #block of code

except Exception1:

 #block of code

except Exception2:

 #block of code

#other code

The use the else statement with the try-except statement, place the code

which will be executed in the scenario if no exception occurs in the try block.

The syntax to use the else statement with the try-except statement is given

below.

If file not present:

If file present:

The finally block

The finally block with the try block in which, we can pace the important code

which must be executed before the try statement throws an exception.

(in given example we open file which is present in directory or filename

where writing code.)

Raise an exception

To throw (or raise) an exception, use the raise keyword.

User defined exceptions.

Python has many built-in exceptions which forces program to output an error

when something in it goes wrong.

However, sometimes need to create a custom exception that serves purpose.

In Python, users can define such exceptions by creating a new class. This

exception class has to be derived, either directly or indirectly, from Exception

class.

MSBTE
NOTES

PRESENTS

Best notes on msbte notes free

