

Control System

Stability & Routh's Stability Criterion

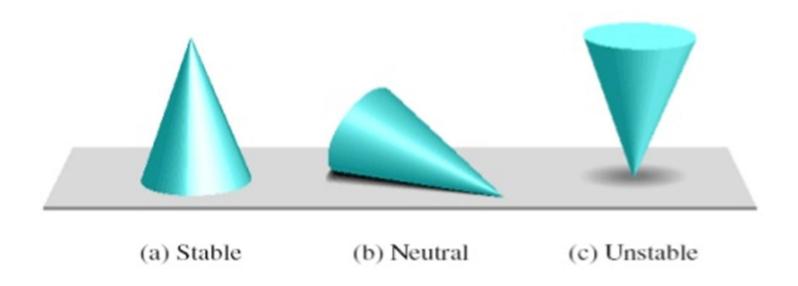
Content

- Review of Last Lecture.
- Transfer Function.
- Transfer function of RC and RLC electrical circuit.
- Examples of Transfer function
- Order of System & its type

Learning Objectives

- Able to define use of TF in control system.
- Able to derive expression for open loop and closed loop system.
- Transfer function of RC and RLC electrical circuits.

Concept of Stabilty



The concept of stability can be illustrated by a cone placed on a plane horizontal surface.

Stable System

A linear time invarient system is stable if following conditions are satisfied:

- ➤ A bounded input is given to the system, the response of the system is bounded and controllable.
- ➤ In the absence of the inputs, the output should tend to zero as time increases.

Unstable System

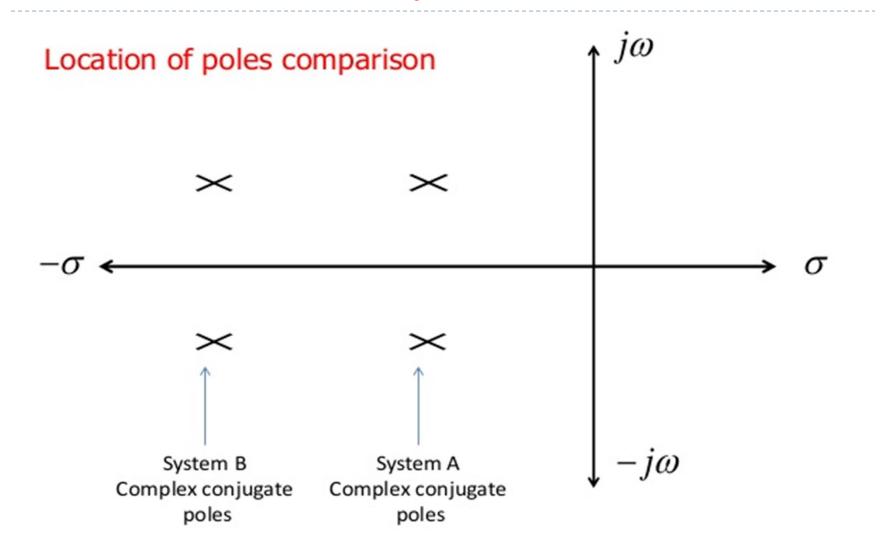
- ➤ A linear time invarient system comes under the class of unstable system if the system is excited by a bounded input, response is unbounded.
- ➤ This means once any input is given system output goes on increasing & designer does not have any control on it

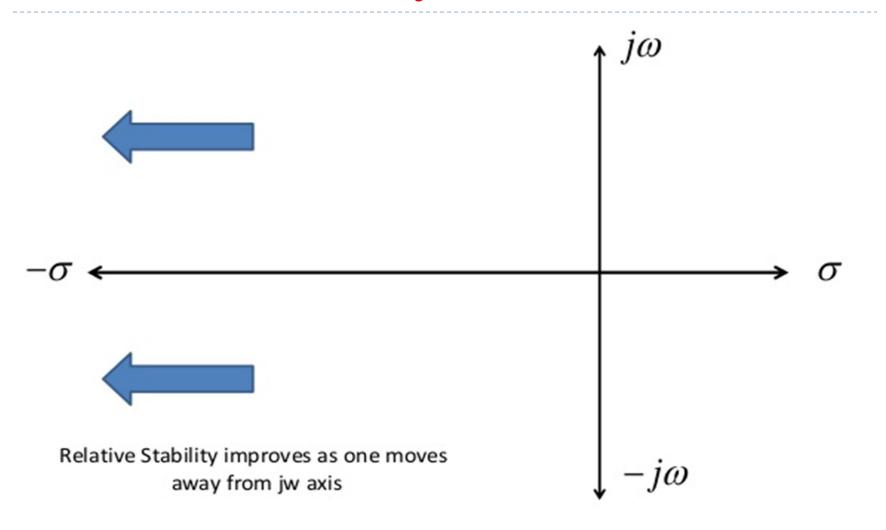
Critically Stable System

- ➤ When the input is given to a linear time invarient system, for critically stable systems the output does not go on increasing infinitely nor does it go to zero as time increases.
- ➤ The output usually oscillates in a finite range or remains steady at some value.
- Such systems are not stable as their response does not decay to zero. Neither they are defined as unstable because their output does not go on increasing infinitely.

- A system may be absolutely stable i.e. it may have passed the Routh stability test.
- ➤ As a result their response decays to zero under zero input conditions.
- ➤ The ratio at which these decay to zero is important to check the concept of "Relative stability"

- ➤ When the poles are located far away from jw axis in LHP of s-plane, the response decays to zero much faster, as compared to the poles close to jw-axis.
- The more the poles are located far away from jw-axis the more is the system relatively stable.





Routh's Stability Criterion

For the transfer function;

$$\frac{C(s)}{R(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_n}$$

In this criterion, the coefficients of denominator are arranged in an Array called "Routh's Array";

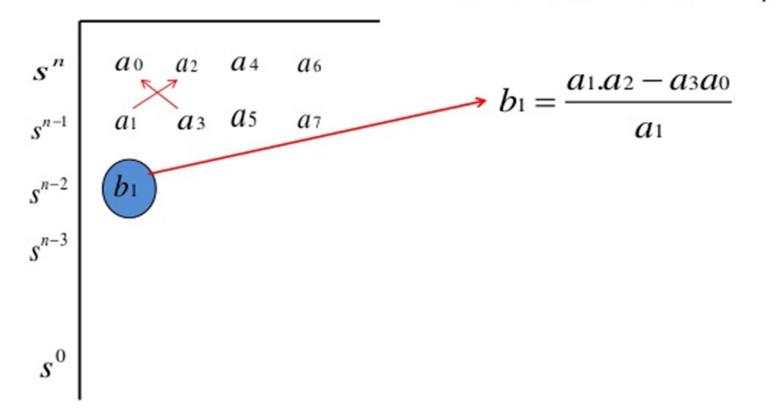
$$a_0s^n + a_1s^{n-1} + \dots + a_n = 0$$

Coefficient of s^n and s^{n-1} row are directly written from the given equation

$$a_0s^n + a_1s^{n-1} + \dots + a_n = 0$$

The Routh's array as below;

For next row i.e. s^{n-2} ;



Coefficient of s^n and s^{n-1} row are directly written from the given equation

For next row i.e. s^{n-2} ;

$$a_0s^n + a_1s^{n-1} + \dots + a_n = 0$$

The Routh's array as below;

Coefficient of s^n and s^{n-1} row are directly written from the given equation

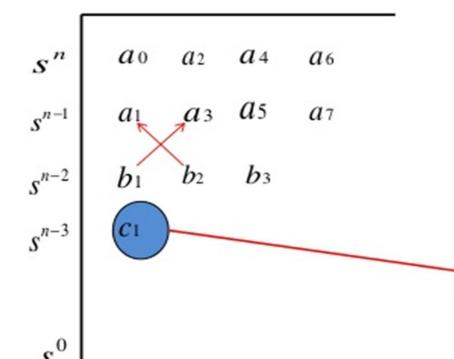
$$a_0s^n + a_1s^{n-1} + \dots + a_n = 0$$

The Routh's array as below;

For next row i.e. s^{n-2}

Now the same technique is used, for next row i.e. s^{n-1} but only previous two rows are used i.e. s^{n-1} & s^n

The Routh's array as below;

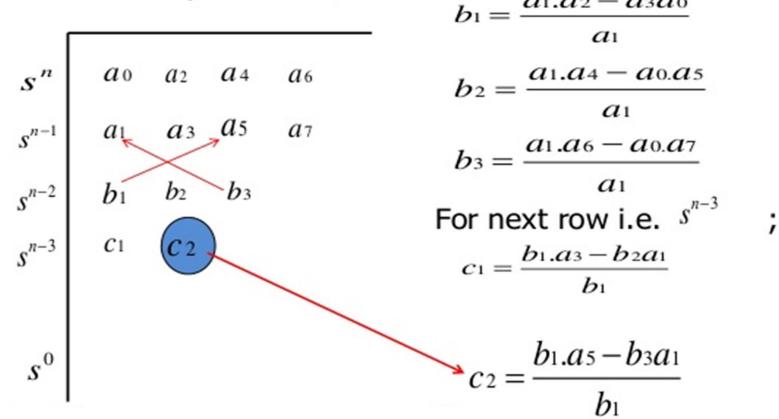


For next row i.e. s^{n-2} ; For next row i.e. s^{n-3}

Now the same technique is used, for next row i.e. s^{n-1} but only previous two rows are used i.e. s^{n-1} & s^n

For next row i.e. s^{n-2}

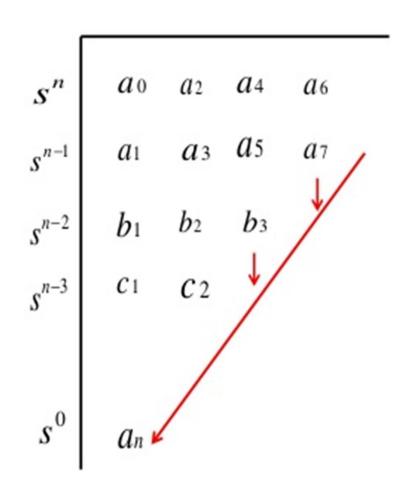
The Routh's array as below;



Now the same technique is used, for next row i.e. s^{n-1} but only previous two rows are used i.e. s^{n-1} & s^n

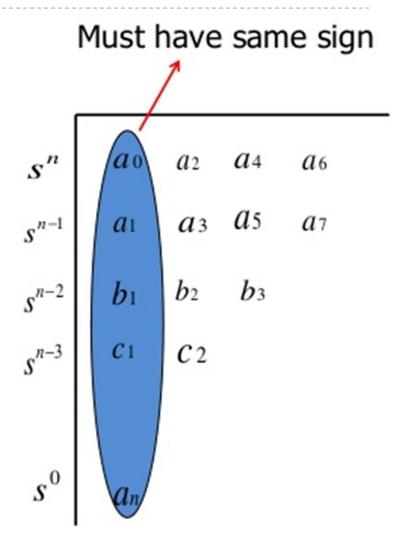
Each column will reduce by one as we move down the array.

This process is obtained till last row is obtained.



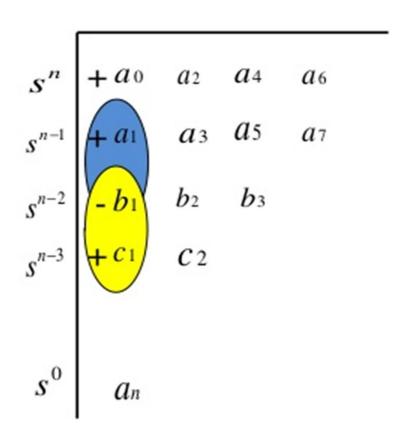
Routh's Criterion

- The necessary & sufficient conditions for a system to be stable is all terms in the first column at Routh's Array should have same sign.
- There should not be any sign change in first column.



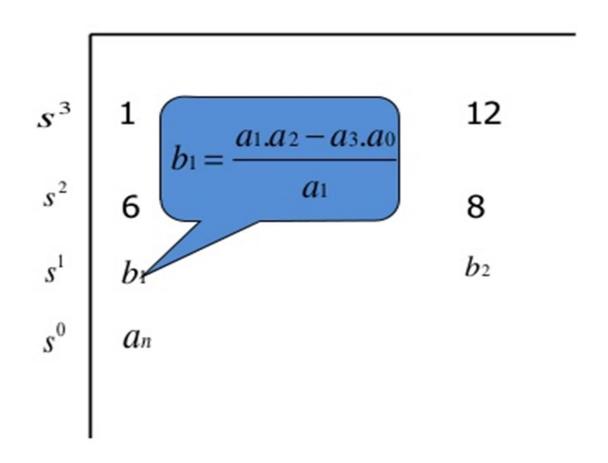
Routh's Criterion

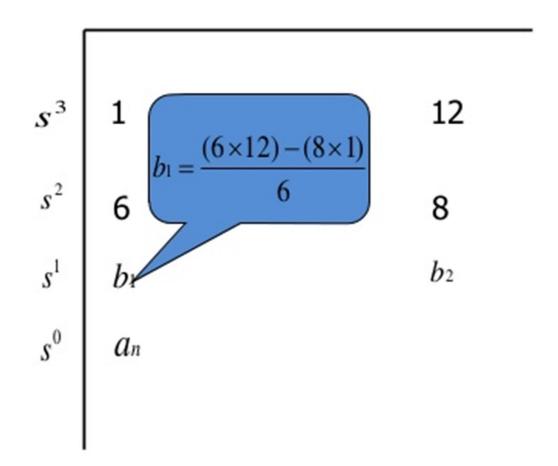
- When there are sign changes in the first column of Routh's array then the system is unstable.
- There are roots in RHP.
- ➤ The number of sign changes equal the number of roots in RHP.



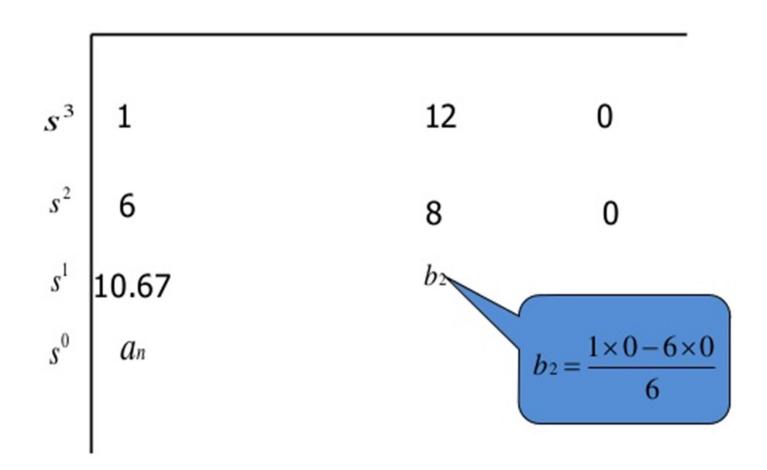
$$\int_{a_0}^{s^3} + 6s^2 + 12s + 8 = 0$$

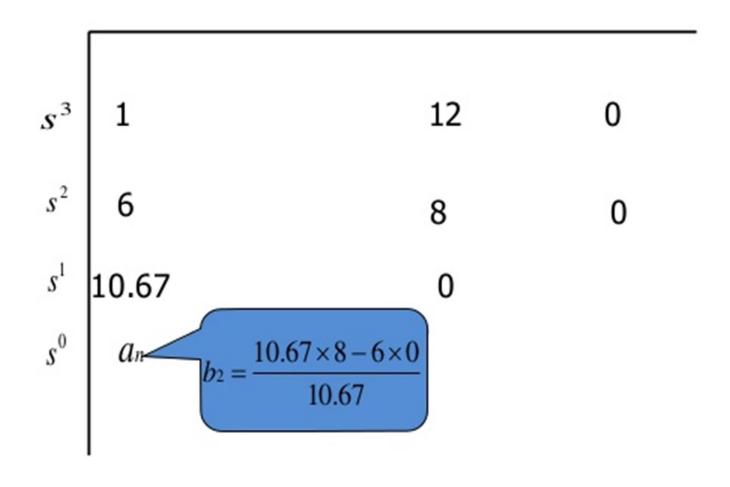
- 1		
s^3	1	12
s^2	6	8
s^{1}	b_1	b_2
s^{0}	a_n	





ĺ			
s^3	1	12	0
s^2	6	8	0
s^{1} s^{0}	10.67	b_2	
s^0	An		$b_2 = \frac{a_{1}.a_4 - a_{0}.a_5}{a_1}$





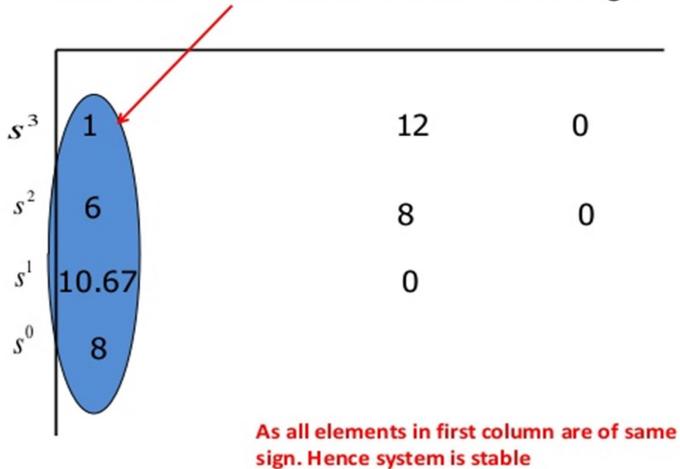
Cont...

$$s^3 + 6s^2 + 12s + 8 = 0$$

 s^{3} 1 12 0 s^{2} 6 8 0 s^{1} 10.67 0 s^{0} 8

Cont...

Elements in first column are of same sign



Comment on stability. $s^4 + 2s^3 + 6s^2 + 10s + 3 = 0$

$$s^4 + 2s^3 + 6s^2 + 10s + 3 = 0$$

$$\begin{vmatrix}
s^4 \\
s^3 \\
2 \\
10 \\
0
\end{vmatrix}$$

$$b_1 = \frac{a_1 \cdot a_2 - a_3 \cdot a_0}{a_1}$$

$$s^2 \\
b_1 \\
b_2 \\
c_1 \\
c_1$$

$$b_1 = \frac{(2 \times 6) - (1 \times 10)}{2}$$

$$b_1 = 1$$

				_
s^4	1	6 10 b ₂	3	$b_2 = \frac{a_1.a_4 - a_{0.a_5}}{a_{0.a_5}}$
s^3	2	10	0	a_1
s^2	1	b_2		$b_2 = \frac{2 \times 3 - 1 \times 0}{2}$
s^1	C1			_
s^{0}	a_n			$b_2 = 3$

				_
s^4	1	6 10 3	3	$c_1 = \frac{b_1 \cdot a_3 - b_2 a_1}{b_1}$
s^3	2	10	0	
s^2	1	3		$c_1 = \frac{1 \times 10 - 2 \times 3}{1}$
s^1	<i>C</i> 1			
s^{0}	a_n			$c_1 = 4$

s^4	1	6 10 3	3	$a_n = \frac{c_1 \cdot b_2 - b_1 c_2}{c_1}$
s^3	2	10	0	
s^2	1	3		$a_n = \frac{4 \times 3 - 1 \times 0}{4}$
s^1	4			
s^{0}	a_n			$a_n = 3$

Cont...

s^4	1	6	3	
s^3	2	10	0	
s^2	1	3		
s^1	4			
s^4 s^3 s^2 s^0	3			

As no sign change in first column; system is stable

Comment on stability. $2s^3 + 4s^2 + 4s + 12 = 0$

$$2s^3 + 4s^2 + 4s + 12 = 0$$

				•
s^3	2	4	0	$b_2 = \frac{(4\times0)-(2\times0)}{4}$
s^2	4	4 12 b ₂		4
s^1	-2	b_2		$b_2 = 0$
s^{0}	a_n			

			9	
s^3	2	4	0	$a_n = \frac{(-2 \times 12) - (4 \times 0)}{-2}$
s^2	4	4 12 0		-2
s^1	-2	0		$a_n = 12$
s^{0}	a_n			

Cont...

There are two sign changes +4 to -2 and -2 to +12. Hence two roots are in RHP S-plane and system is unstable

Summary

▶ Transfer Function.

▶ Transfer Function of RC and RLC circuits.

Order of system.

▶ Types of system.