

Transient Response

- The variation of output response during the time; it takes to reach its final value is called transient response.
- Also, part of time response which goes to zero as time becomes very large is called as <u>Transient Response</u>.

$$\lim_{t\to\infty}c(t)=0$$

As name suggests transient response remains only for some time from initial state to final state.

Standard Test Signals

- Thus from such types of inputs we can expect a system in general to get an input which may be:
- 1. A sudden change.
- 2. A momentary shock.
- 3. A constant velocity.
- 4. A constant acceleration.
- Hence these signals form standard test signals. Response to these signals is analyzed. Above inputs are called:
- 1. Step input :- Signifies sudden change.
- 2. Impulse input :- Signifies momentary shock.
- 3. Ramp input :- Signifies constant velocity.
- 4. Parabolic input :- Signifies constant acceleration.

Poles & Zeros of Transfer Function The transfer function is given by, $G(s) = \frac{C(s)}{R(s)}$ Both C(s) and R(s) are polynomials in s $\therefore G(s) = \frac{b_n s^m + b_{m-1} s^{m-1} + \dots + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_n}$ $= \frac{K(s-b_1)(s-b_2)(s-b_3)\dots(s-b_m)}{(s-a_1)(s-a_2)(s-a_3)\dots(s-a_n)}$ Where, K= system gain n= Type of system

Poles of Transfer Function

The values of 's', for which the transfer function magnitude |G(s)| becomes infinite after substitution in the denominator of the system are called as **"Poles"** of transfer function.

Zeros of Transfer Function

The values of 's', for which the transfer
function magnitude G(s) becomes zero
after substitution in the numerator of the
system are called as "Zeros" of transfer
function.

Characteristics Equation

Definition: The equation obtained by equating the denominator polynomial of a transfer function to zero is called as the "**Characteristics Equation**"

$$s^{n} + a_{n-1}s^{n-1} + a_{n-2}s^{n-2} + \dots + a_{n}$$

Example 1: For the given transfer function, $T \cdot F \cdot = \frac{K(s+6)}{s(s+2)(s+5)(s^2+7s+12)}$ Find: (i) Poles (ii)Zeros (ii)Zeros (iii) Pole-zero Plot (iv) Characteristics Equation **Solution:** (i)Poles The poles can be obtained by equating denominator with zero $s(s+2)(s+5)(s^2+7s+12) = 0$ $\therefore s = 0$ $\therefore s = 0$ $\therefore s = 2$ $\therefore s = 5 = 0$ $\therefore s = -2$

Example 1:

(iv) Characteristics Equation:

 $s(s+2)(s+5)(s^2+7s+12) = 0$

$$s(s^2 + 7s + 10)(s^2 + 7s + 12) = 0$$

 $\therefore (s^3 + 7s^2 + 10s)(s^2 + 7s + 12) = 0$

$$\therefore s^5 + 7s^4 + 12s^3 + 7s^4 + 49s^3 + 84s^2 + 10s^3 + 70s^2 + 120s = 0$$

$$\therefore s^{5} + 14s^{4} + 71s^{3} + 154s^{2} + 120s = 0$$

Example 2: For the given transfer function, $\frac{C(s)}{R(s)} = \frac{(s+2)}{s(s^2+2s+2)(s^2+7s+12)}$ Find: (i) Poles (i)Zeros (i)Zeros (ii) Pole-zero Plot (iv) Characteristics Equation **Solution:** (i)Poles The poles can be obtained by equating denominator with zero $\frac{s(s^2+2s+2)(s^2+7s+12)=0}{\therefore s=0}$ $\therefore s=0$ $\therefore s=0$ $\therefore s=-3$ $\therefore s+4=0$ $\therefore s=-4$

Analysis of First Order System for Step input $\therefore C(s) = \frac{1}{1+Ts} \times \frac{1}{s}$ Using partial fraction; $\therefore C(s) = \frac{A}{s} + \frac{B}{s + \frac{1}{T}}$ Solving; $\therefore A = s \cdot C(s) \mid_{s=0} = 1$ $\therefore B = (s + \frac{1}{T})C(s) \mid_{s=-\frac{1}{T}} = -1$ Analysis of First Order System for Step input

$$\therefore C(s) = \frac{1}{s} - \frac{1}{s + \frac{1}{T}}$$

Taking Inverse Laplace transform;

$$\therefore c(t) = L^{-1}\{C(s)\} = L^{-1}\{\frac{1}{s}\} - L^{-1}\{\frac{1}{s+\frac{1}{T}}\}$$
$$\therefore c(t) = 1 - e^{-\frac{1}{T}t}$$

Analysis of Second Order System for Step input

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

This is the standard form of the closed loop transfer function

These poles of transfer function are given by;

- ---

$$s^{2} + 2\xi \omega_{n}s + \omega_{n}^{2} = 0$$

$$\therefore s = \frac{-2\xi \omega_{n} \pm \sqrt{(2\xi \omega_{n})^{2} - 4(\omega_{n})^{2}}}{2}$$
$$= -\xi \omega_{n} \pm \sqrt{\xi^{2} \omega_{n}^{2} - \omega_{n}^{2}}$$
$$= -\xi \omega_{n} \pm \omega_{n} \sqrt{\xi^{2} - 1}$$

