
Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 1

CO1 : Apply various software testing methods

Software testing:
 Software testing is defined as performing Verification and Validation of the Software

Product for its correctness and accuracy of working.

 Software Testing is the process of executing a program with the intent of finding errors.

 A successful test is one that uncovers an as-yet-undiscovered error.

 Testing can show the presence of bugs but never their absence.

 Testing is a support function that helps developers look good by finding their mistakes

before anyone else does.

Role of testing / Objectives of testing:

1. Finding defects which may get created by the programmer while developing the software.

2. Gaining confidence in and providing information about the level of quality.

3. To prevent defects.

4. To make sure that the end result meets the business and user requirements.

5. To ensure that it satisfies the BRS that is Business Requirement Specification and SRS that is

System Requirement Specifications.

6. To gain the confidence of the customers by providing them a quality product

What is Software testing?
• Finding defects

• Trying to break the system

• Finding and reporting defects

• Demonstrating correct functionality

• Demonstrating incorrect functionality

• Demonstrating robustness, reliability, security, maintainability, …

• Measuring performance, reliability, …

• Evaluating and measuring quality

• Proving the software correct

• Executing pre-defined test cases

• Automatic error detection

Skills Required for Tester

• Communication skills

• Domain knowledge

• Desire to learn

• Technical skills

• Analytical skills

• Planning

• Integrity

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 2

• Curiosity

• Think from users perspective

• Be a good judge of your product

Bug, Fault & Failure

• A person makes an Error

• That creates a fault in software

• That can cause a failure in operation

• Error: An error is a human action that produces the incorrect result that results in

a fault.

• Bug: The presence of error at the time of execution of the software.

• Fault: State of software caused by an error.

• Failure: Deviation of the software from its expected result. It is an event.

• Defect: A defect is an error or a bug, in the application which is created. A programmer

while designing and building the software can make mistakes or error. These mistakes or

errors mean that there are flaws in the software. These are called defects.

Why do defects occur in software?

Software is written by human beings

� Who know something, but not everything

� Who have skills, but aren’t perfect

� Who don’t usually use rigorous methods

� Who do make mistakes (errors)

Under increasing pressure to deliver to strict deadlines

� No time to check, assumptions may be wrong

� Systems may be incomplete

Software is complex, abstract and invisible

� Hard to understand

� Hard to see if it is complete or working correctly

� No one person can fully understand large systems

� Numerous external interfaces and dependencies

Sources of defects

Education

� Developers does not understand well enough what he or she is doing

� Lack of proper education leads to errors in specification, design, coding, and testing

Communication

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 3

� Developers do not know enough

� Information does not reach all stakeholders

� Information is lost

Oversight

� Omitting to do necessary things

Transcription

� Developer knows what to do but simply makes a mistake

Process

� Process is not applicable for the actual situation

� Process places restrictions that cause errors

Test Plan

A test plan is a systematic approach to testing a system i.e. software. The plan typically contains

a detailed understanding of what the eventual testing workflow will be.

Test Case

A test case is a specific procedure of testing a particular requirement.

It will include:

• Identification of specific requirement tested

• Test case success/failure criteria

• Specific steps to execute test

• Test Data

Entry and Exit Criteria for software testing

Process model is a way to represent any given phase of software development that prevent and

minimize the delay between defect injection and defect detection/ correction.

Entry criteria, specifies when that phase can be started also included the inputs for the phase.

Tasks or steps that need to be carried out in that phase along with measurements that characterize

the tasks. Verification, which specifies methods of checking that tasks have been carried out

correctly. Clear entry criteria make sure that a given phase does not start prematurely. The

verification for each phase helps to prevent defects. At least defects can be minimized.

Exit criteria, which stipulate the conditions under which one can consider the phases as done and

included are the outputs for the phase.

Exit criteria may include:

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 4

1. All test plans have been run

2. All requirements coverage has been achieved.

3. All severe bugs are resolved.

ENTRY CRITERIA

Entry Criteria for QA testing is defined as “Specific conditions or on-going activities that must

be present before a process can begin”. In the Systems Development Life Cycle it also specifies

which entry criteria are required at each phase. Additionally, it is also important to define the

time interval or required amount of lead time that an entry criteria item is available to the

process. Input can be divided into two categories. The first is what we receive from development.

The second is what we produce that acts as input to later test process steps.

The type of required input from development includes:

1. Technical Requirements/Statement of Need

2. Design Document

3. Change Control

4. Turnover Document

The type of required input from test includes:

1. Evaluation of available software test tools

2. Test Strategy

3. Test Plan

4. Test Incident Reports

By referencing the Entry Exit Criteria matrix, we get the clarity of the deliverables expected

from each phase. The matrix should contain “date required” and should be modified to meet the

specific goals and requirements of each test effort based on size and complexity.

EXIT CRITERIA

Exit Criteria is often viewed as a single document concluding the end of a life cycle phase. Exit

Criteria is defined as “The specific conditions or on-going activities that must be present before a

life cycle phase can be considered complete. The life cycle specifies which exit criteria are

required at each phase”. This definition identifies the intermediate deliverables, and allows us to

track them as independent events.

The type of output from test includes:

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 5

1. Test Strategy

2. Test Plan

3. Test Scripts/Test Case Specifications

4. Test Logs

5. Test Incident Report Log

6. Test Summary Report/Findings Report

By identifying the specific Exit criteria, we are able to identify and plan how these steps and

processes fit into the life cycle. All of the Exit Criteria listed above, less the Test

Summary/Findings Report; act as Entry Criteria to alter process.

Verification & Validation

• Verification

• Are you building the product right?

• Software must conform to its specification

• Validation

• Are you building the right product?

• Software should do what the user really requires

What is Verification?

Definition: The process of evaluating software to determine whether the products of a given

development phase satisfy the conditions imposed at the start of that phase.

• Verification is a static practice of verifying documents, design, code and program. It

includes all the activities associated with producing high quality software: inspection,

design analysis and specification analysis. It is a relatively objective process.

• Verification will help to determine whether the software is of high quality, but it will not

ensure that the system is useful. Verification is concerned with whether the system is

well-engineered and error-free.

• Methods of Verification : Static Testing

• Walkthrough

• Inspection

• Review

http://toolsqa.com/software-testing/static-testing/

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 6

What is Validation?

Definition: The process of evaluating software during or at the end of the development

process to determine whether it satisfies specified requirements.

• Validation is the process of evaluating the final product to check whether the software

meets the customer expectations and requirements. It is a dynamic mechanism of

validating and testing the actual product.

• Methods of Validation : Dynamic Testing

• Testing

• End Users

Verification Validation

1. Verification is a static practice of verifying

documents, design, code and program.

1. Validation is a dynamic mechanism of

validating and testing the actual product.

2. It does not involve executing the code. 2. It always involves executing the code.

3. It is human based checking of documents and

files.

3. It is computer based execution of

program.

4. Verification uses methods like inspections,

reviews, walkthroughs, and Desk-checking etc.

4. Validation uses methods like black box

(functional) testing, gray box testing, and

white box (structural) testing etc.

5. Verification is to check whether the software

conforms to specifications.

5. Validation is to check whether software

meets the customer expectations and

requirements.

6. It can catch errors that validation cannot

catch. It is low level exercise.

6. It can catch errors that verification cannot

catch. It is High Level Exercise.

7. Target is requirements specification,

application and software architecture, high

level, complete design, and database design etc.

7. Target is actual product-a unit, a module,

a bent of integrated modules, and effective

final product.

8. Verification is done by QA team to ensure

that the software is as per the specifications in

the SRS document.

8. Validation is carried out with the

involvement of testing team.

http://toolsqa.com/software-testing/dynamic-testing/

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 7

9. It generally comes first-done before

validation.

9. It generally follows after verification.

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 8

Verification and validation model makes the V-model. It is sequential path of execution of

processes. Each phase must be completed before the next phase begins. Under V-model, the

corresponding testing phase of the development phase is planned in parallel. So there is

verification on one side of V & validation phase on the other side of V.

Verification Phase:

1. Overall Business Requirement: In this first phase of the development cycle, the product

requirements are understood from customer perspective. This phase involves detailed

communication with the customer to understand his expectations and exact requirements. The

acceptance test design planning is done at this stage as business requirements can be used as an

input for acceptance testing.

2. Software Requirement: Once the product requirements are clearly known, the system can be

designed. The system design comprises of understanding & detailing the complete hardware,

software & communication set up for the product under development. System test plan is

designed based on system design. Doing this at earlier stage leaves more time for actual test

execution later.

3. High level design: High level specification are understood & designed in this phase. Usually

more than one technical approach is proposed & based on the technical & financial feasibility,

the final decision is taken. System design is broken down further into modules taking up

different functionality.

4. Low level design: In this phase the detailed integral design for all the system modules is

specified. It is important that the design is compatible with the other modules in the system &

other external system. Components tests can be designed at this stage based on the internal

module design,

5. Coding: The actual coding of the system modules designed in the design phase is taken up in

the coding phase. The base suitable programming language is decided base on requirements.

Coding is done based on the coding guidelines & standards.

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 9

Validation:

1. Unit Testing: Unit testing designed in coding are executed on the code during this validation

phase. This helps to eliminate bugs at an early stage.

2. Components testing: This is associated with module design helps to eliminate defects in

individual modules.

3. Integration Testing: It is associated with high level design phase & it is performed to test the

coexistence & communication of the internal modules within the system

5. System Testing: It is associated with system design phase. It checks the entire system

functionality & the communication of the system under development with external systems.

Most of the software & hardware compatibility issues can be uncovered using system test

execution.

6. Acceptance Testing: It is associated with overall & involves testing the product in user

environment. These tests uncover the compatibility issues with the other systems available in the

user environment. It also uncovers the non-functional issues such as load & performance defects

in the actual user environment.

Quality Assurance:

i. It is Process oriented activities.

ii. A part of quality management focused on providing confidence that quality requirements will

be fulfilled.

iii. All the planned and systematic activities implemented within the quality system that can be

demonstrated to provide confidence that a product or service will fulfill requirements for quality

iv. Quality Assurance is fundamentally focused on planning and documenting those processes to

assure quality including things such as quality plans and inspection and test plans.

v. Quality Assurance is a system for evaluating performance, service, of the quality of a product

against a system, standard or specified requirement for customers.

vi. Quality Assurance is a complete system to assure the quality of products or services. It is not

only a process, but a complete system including also control. It is a way of management.

● Standards: Standards are the criteria’s to which the s/w product is compared.

● Documentations Standards: Specify form and Contents for planning, analysis and

product documentation and consistency throughout a project.

● Design Standards: Specify forms and contents of design product. They provide rules and

methods for translating the s/w requirements into the s/w design.

● Code Standards: Specify the language in which code is to written and define any

restrictions on use of language features.

● They define legal language structures, style conversions, rules for data structure and

interface.

● Procedure: Expected steps to be followed in carrying out a process.

Quality Control:

i. It is Product oriented activities.

ii. A part of quality management focused on fulfilling quality requirements.

iii. The operational techniques and activities used to fulfill requirements for quality.

iv. Quality Control on the other hand is the physical verification that the product conforms to

these planned arrangements by inspection, measurement etc.

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 10

v. Quality Control is the process involved within the system to ensure job management,

competence and performance during the manufacturing of the product or service to ensure it

meets the quality plan as designed.

vi. Quality Control just measures and determines the quality level of products or services.

Methods of testing:
1. Static Testing :

 Static testing is the testing of the software work products manually, or with a set of tools,

but they are not executed.

 It starts early in the Life cycle and so it is done during the verification process.

 It does not need computer as the testing of program is done without executing the

program. For example: reviewing, walk through, inspection, etc.

 Static testing consists of following methods

1) Walkthrough

2) Inspection

3) Technical Review

Advantages of Static Testing

 Since static testing can start early in the life cycle, early feedback on quality issues can be

established.

 By detecting defects at an early stage, rework costs are most often relatively low.

 Since rework effort is substantially reduced, development productivity figures are likely

to increase.

 The evaluation by a team has the additional advantage that there is an exchange of

information between the participants.

 Static tests contribute to an increased awareness of quality issues.

Disadvantages of Static Testing

 Demand great amount of time when done manually

 Automated tools works with only few programming languages

 Automated tools may provide false positives and false negatives

 Automated tools only scan the code

 Automated tools cannot pinpoint weak points that may create troubles in run-time

2. Dynamic Testing

 Dynamic testing (or dynamic analysis) is a term used in software engineering to describe

the testing of the dynamic behavior of code.

 That is, dynamic analysis refers to the examination of the physical response from the

system to variables that are not constant and change with time.

 In dynamic testing the software must actually be compiled and run.

https://en.wikipedia.org/wiki/Software_engineering

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 11

 It involves working with the software, giving input values and checking if the output is as

expected by executing specific test cases which can be done manually or with the use of

an automated process

 The process and function of dynamic testing in software development, dynamic testing

can be divided into unit testing, integration testing, system testing, acceptance testing and

finally regression testing.

 Unit testing is a test that focuses on the correctness of the basic components of software.

Unit testing falls into the category of white-box testing. In the entire quality inspection

system, unit testing needs to be completed by the product group, and then the software is

handed over to the testing department.

 Integration testing is used to detect if the interfaces between the various units are properly

connected during the integration process of the entire software.

 Testing a software system that has completed integration is called a system test, and the

purpose of the test is to verify that the correctness and performance of the software

system meet the requirements specified in its specifications. Testers should follow the

established test plan. When testing the robustness and ease of use of the software, its

input, output, and other dynamic operational behaviour should be compared to the

software specifications. If the software specification is incomplete, the system test is

more dependent on the tester's work experience and judgment, such a test is not

sufficient. The system test is Black-box testing.

 This is the final test before the software is put into use. It is the buyer's trial process of the

software. In the actual work of the company, it is usually implemented by asking the

customer to try or release the Beta version of the software. The acceptance test is Black-

box testing.

 The purpose of regression testing is to verify and modify the acceptance test results in

the software maintenance phase. In practical applications, the handling of customer

complaints is an embodiment of regression testing.

Advantages of Dynamic Testing

 Dynamic testing could identify the weak areas in the runtime environment.

 Dynamic testing supports application analysis even if the tester does not have an actual

code.

 Dynamic testing could identify some vulnerabilities that are difficult to find by static

testing.

 Dynamic testing also could verify the correctness of static testing results.

 Dynamic testing could be applied to any application.

Disadvantages of Dynamic Testing

 Automated tools may give the wrong security, such as check everything.

 Automated tools can generate false positives and false negatives.

 Finding trained dynamic test professionals is not easy.

 Dynamic testing is hard to track down the vulnerabilities in the code, and it takes longer

to fix the problem. Therefore, fixing bugs becomes expensive.

https://en.wikipedia.org/wiki/Test_case
https://en.wikipedia.org/wiki/Software_specification
https://en.wikipedia.org/wiki/Black-box_testing
https://en.wikipedia.org/wiki/Black-box_testing
https://en.wikipedia.org/wiki/Black-box_testing
https://en.wikipedia.org/wiki/Software_maintenance
https://en.wikipedia.org/wiki/Runtime_environment
https://en.wikipedia.org/wiki/Static_testing
https://en.wikipedia.org/wiki/Static_testing
https://en.wikipedia.org/wiki/Static_testing

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 12

White box testing

1) Walkthrough
 In walkthrough, author guides the review team via the document to fulfill the common

understanding and collecting the feedback.

 Walkthrough is not a formal process.

 In walkthrough, a review team does not require to do detailed study before meeting while

authors are already in the scope of preparation.

 Walkthrough is useful for higher-level documents i.e requirement specification and

architectural documents.

Goals of Walkthrough

 Make the document available for the stakeholders both outside and inside the software

discipline for collecting the information about the topic under documentation.

 Describe and evaluate the content of the document.

 Study and discuss the validity of possible alternatives and proposed solutions.

Participants of Structured Walkthrough

 Author - The Author of the document under review.

 Presenter - The presenter usually develops the agenda for the walkthrough and presents

the output being reviewed.

 Moderator - The moderator facilitates the walkthrough session, ensures the walkthrough

agenda is followed, and encourages all the reviewers to participate.

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 13

 Reviewers - The reviewers evaluate the document under test to determine if it is

technically accurate.

 Scribe - The scribe is the recorder of the structured walkthrough outcomes who records

the issues identified and any other technical comments, suggestions, and unresolved

questions.

Benefits of Structured Walkthrough

 Saves time and money as defects are found and rectified very early in the lifecycle.

 This provides value-added comments from reviewers with different technical

backgrounds and experience.

 It notifies the project management team about the progress of the development process.

 It creates awareness about different development or maintenance methodologies which

can provide a professional growth to participants.

2) Inspection
 The trained moderator guides the Inspection. It is most formal type of review.

 The reviewers are prepared and check the documents before the meeting.

 In Inspection, a separate preparation is achieved when the product is examined and

defects are found. These defects are documented in issue log.

 In Inspection, moderator performs a formal follow-up by applying exit criteria.

Goals of Inspection

 Assist the author to improve the quality of the document under inspection.

 Efficiently and rapidly remove the defects.

 Generating the documents with higher level of quality and it helps to improve the product

quality.

 It learns from the previous defects found and prohibits the occurrence of similar defects.

 Generate common understanding by interchanging information.

Difference between Inspection and Walkthrough

Inspection Walkthrough

Formal Informal

Initiated by the project team Initiated by the author

Planned meeting with fixed roles assigned to all

the members involved

Unplanned.

Reader reads the product code. Everyone inspects

it and comes up with defects.

Author reads the product code and his team mate

comes up with defects or suggestions

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 14

Recorder records the defects Author makes a note of defects and suggestions

offered by team mate

Moderator has a role in making sure that the

discussions proceed on the productive lines

Informal, so there is no moderator

3) Technical Review
 Technical review is a discussion meeting that focuses on technical content of the

document. It is a less formal review.

 It is guided by a trained moderator or a technical expert.

Goals of Technical Review

 The goal is to evaluate the value of technical concept in the project environment.

 Build the consistency in the use and representation of the technical concepts.

 In early stages it ensures that the technical concepts are used correctly.

 Notify the participants regarding the technical content of the document.

Code Functional Testing:

i. Code Functional Testing involves tracking a piece of data completely through the software.

ii. At the unit test level this would just be through an individual module or function.

iii. The same tracking could be done through several integrated modules or even through the

entire software product although it would be more time consuming to do so.

iv. During data flow, the check is made for the proper declaration of variables declared and

the loops used are declared and used properly.

For example

1. #include<stdio.h>

2. void main()

3. {

4. int i , fact= 1, n;

6. scan

7. for(i =1; i<=n; i++)

8. fact = fact * i;

9.printf(“\n Factorial of number is %d”,fact);

10. }

Code Coverage Testing:

i. The logical approach is to divide the code just as you did in black-box testing into its data

and its states (or program flow).

ii. By looking at the software from the same perspective, you can more easily map the white-

box information you gain to the black-box case you have already written.

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 15

iii. Consider the data first. Data includes all the variables, constants, arrays, data structures,

keyboard and mouse input, files and screen input and output, and I/O to other devices such as

modems, networks, and so on.

For example

1. #include<stdio.h>

2. void main()

3. {

4. int i , fact= 1, n;

5. printf(“Enter the number”);

6. scanf(“%d”,&n);

7. for(i =1; i<=n; i++)

8. fact = fact * i;

9.printf(“\n Factorial of number is %d”,fact);

10. }

The declaration of data is complete with the assignment statement and the variable

declaration statements. All the variable declared are properly utilized.

Program Statements and Line Coverage (Code Complexity Testing)

 i. The most straightforward form of code coverage is called statement coverage or line

coverage.

 ii. If you‘re monitoring statement coverage while you test your software, your goal is to

make sure that you execute every statement in the program at least once.

 iii. With line coverage the tester tests the code line by line giving the relevant output.

For example

 1. #include

 2. void main()

3. {

4. int i , fact= 1, n;

5. printf(―enter the number ―);

6. scanf(―%d‖, &n);

7. for(i =1 ;i <=n; i++)

8. fact = fact * i;

9. printf(“\n Factorial of number is %d”,fact);

10. }

Branch Coverage (Code Complexity Testing)
i. Attempting to cover all the paths in the software is called path testing.

ii. The simplest form of path testing is called branch coverage testing.

iii. To check all the possibilities of the boundary and the sub boundary conditions and it‘s

branching on those values.

 iv. Test coverage criteria requires enough test cases such that each condition in a decision

takes on all possible outcomes at least once, and each point of entry to a program or

subroutine is invoked at least once.

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 16

v. Every branch (decision) taken each way, true and false. vi. It helps in validating all the

branches in the code making sure that no branch leads to abnormal behavior of the

application.

 Condition Coverage (Code Complexity Testing)
i. Just when you thought you had it all figured out, there‘s yet another Complication to path

testing.

ii. Condition coverage testing takes the extra conditions on the branch statements into

account.

Black Box Testing
 Black Box Testing, also known as Behavioral Testing, is a software testing method in

which the internal structure/ design/ implementation of the item being tested is not known

to the tester. These tests can be functional or non-functional, though usually functional

This method attempts to find errors in the following categories:

• Incorrect or missing functions

• Interface errors

• Errors in data structures or external database access

• Behavior or performance errors

• Initialization and termination errors

• EXAMPLE : A tester, without knowledge of the internal structures of a website, tests the

web pages by using a browser; providing inputs (clicks, keystrokes) and verifying the

outputs against the expected outcome.

Advantages of black box testing

 Tests are done from a user’s point of view and will help in exposing discrepancies in the

specifications.

 Tester need not know programming languages or how the software has been

implemented.

http://softwaretestingfundamentals.com/software-testing-methods/

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 17

 Tests can be conducted by a body independent from the developers, allowing for an

objective perspective and the avoidance of developer-bias.

 Test cases can be designed as soon as the specifications are complete.

Disadvantages of black box testing

 Only a small number of possible inputs can be tested and many program paths will be left

untested.

 Without clear specifications, which is the situation in many projects, test cases will be

difficult to design.

 Tests can be redundant if the software designer/ developer has already run a test case.

 Ever wondered why a soothsayer closes the eyes when foretelling events? So is almost

the case in Black Box Testing.

Techniques for black box testing

1) Requirement based testing

 Requirements-based testing is a testing approach in which test cases, conditions and data

are derived from requirements. It includes functional tests and also non-functional

attributes such as performance, reliability or usability.

Stages in Requirements based Testing:

 Defining Test Completion Criteria - Testing is completed only when all the functional

and non-functional testing is complete.

 Design Test Cases - A Test case has five parameters namely the initial state or

precondition, data setup, the inputs, expected outcomes and actual outcomes.

 Execute Tests - Execute the test cases against the system under test and document the

results.

 Verify Test Results - Verify if the expected and actual results match each other.

 Verify Test Coverage - Verify if the tests cover both functional and non-functional

aspects of the requirement.

1.Requirement Based Testing

2.Boundary Value Analysis

3. Equivalence Partitioning

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 18

 Track and Manage Defects - Any defects detected during the testing process goes

through the defect life cycle and are tracked to resolution. Defect Statistics are

maintained which will give us the overall status of the project.

2) Boundary Value Analysis

 For the most part, errors are observed in the extreme ends of the input values, so these

extreme values like start/end or lower/upper values are called Boundary values and

analysis of these Boundary values is called “Boundary value analysis”. It is also

sometimes known as ‘range checking’.

 Boundary value analysis is used to find the errors at boundaries of input domain rather

than finding those errors in the center of input.

 This is one of the software testing technique in which the test cases are designed to

include values at the boundary. If the input data is used within the boundary value limits,

then it is said to be Positive Testing. If the input data is picked outside the boundary value

limits, then it is said to be Negative Testing.

 Boundary value analysis is another black box test design technique and it is used to find

the errors at boundaries of input domain rather than finding those errors in the center of

input.

 Each boundary has a valid boundary value and an invalid boundary value. Test cases are

designed based on the both valid and invalid boundary values. Typically, we choose one

test case from each boundary.

Boundary value analysis is a black box testing and is also applies to white box testing.

Internal data structures like arrays, stacks and queues need to be checked for boundary or

limit conditions; when there are linked lists used as internal structures, the behavior of the

list at the beginning and end have to be tested thoroughly.

 Boundary value analysis help identify the test cases that are most likely to uncover

defects

 For example : Suppose you have very important tool at office, accepts valid User Name

and Password field to work on that tool, and accepts minimum 8 characters and

maximum 12 characters. Valid range 8-12, Invalid range 7 or less than 7 and Invalid

range 13 or more than 13.

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 19

 Test Cases 1: Consider password length less than 8.

 Test Cases 2: Consider password of length exactly 8.

 Test Cases 3: Consider password of length between 9 and 11.

 Test Cases 4: Consider password of length exactly 12.

 Test Cases 5: Consider password of length more than 12.

Test cases for the application whose input box accepts numbers between 1-1000. Valid range 1-

1000, Invalid range 0 and Invalid range 1001 or more.

• Test Cases 1: Consider test data exactly as the input boundaries of input domain i.e.

values 1 and 1000.

• Test Cases 2: Consider test data with values just below the extreme edges of input

domains i.e. values 0 and 999.

• Test Cases 3: Consider test data with values just above the extreme edges of input

domain i.e. values 2 and 1001.

3) Equivalence Partitioning

 Equivalence partitioning is a software technique that involves identifying a small set of

representative input values that produce as much different output condition as possible.

 This reduces the number of permutation & combination of input, output values used for

testing, thereby increasing the coverage and reducing the effort involved in testing.

 The set of input values that generate one single expected output is called a partition.

 When the behavior of the software is the same for a set of values, then the set is termed as

equivalence class or partition.

 Example: An insurance company that has the following premium rates based on the age

group. A life insurance company has base premium of $0.50 for all ages. Based on the

Unit 1: Basics of Software Testing and Testing Methods

Course Coordinator: Mrs. Kshirsagar S.R. M.M.Polytechnic , Thergaon Page 20

age group, an additional monthly premium has to pay that is as listed in the table below.

For example, a person aged 34 has to pay a premium=$0.50 +$ 1.65=$2.15

Age Group Additional Premium

Under 35 $1.65

35-59 $2.87

60+ $6.00

 Based on the equivalence portioning technique, the equivalence partitions that are based

on age are given below:

1. Below 35 years of age (valid input)

2. Between 35 and 59 years of age (valid input)

3. Above 6 years of age (valid input)

4. Negative age (invalid input)

5. Age as 0(invalid input)

6. Age as any three-digit number (valid input)

