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& Thread

m Thread Is a light weight process (LWP), is a basic unit of CPU utilization
®m [t comprises thread ID ,program counter,register set
®m [t shares code section and data section belonging to same program
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277 Single and Multithreaded Processes
code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread —» <«— thread

single-threaded process multithreaded process
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‘tr:f‘“fl/y—;;/ Benefits

® Responsiveness

® Resource Sharing

m Economy

m Utilization of MP architecture /Scalability

Operating System Concepts — 8" Edition 4.4 Silberschatz, Galvin and Gagne ©2009



*9?" Concurrent Execution on a Single-core System
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User Threads

® Thread management done by user-level threads library

m Three primary thread libraries:
e POSIX Pthreads
e Win32 threads
e Java threads
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Kernel Threads

m Supported by the Kernel

m Examples
e Windows XP/2000
e Solaris
e Linux
e Tru64 UNIX
e Mac OS X
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v & Multithreading Models
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® Many-to-One

B One-to-One

® Many-to-Many
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P Many-to-One
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® Many user-level threads mapped to single kernel thread
m Examples:

e Solaris Green Threads

e GNU Portable Threads
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S5 Many-to-One Model

<«——user thread

<«— kernel thread
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i One-to-One

m Each user-level thread maps to kernel thread
m Examples

e Windows NT/XP/2000

e Linux

e Solaris 9 and later
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wr & One-to-one Model

<«—— user thread
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> Many-to-Many Model

m Allows many user level threads to be mapped to many kernel
threads

m Allows the operating system to create a sufficient number of
kernel threads

m Solaris 2,HP-UX,and Tru 64 UNIX
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o Many-to-Many Model

<«—— user thread

<«—— kernel thread
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> & Thread Libraries

m Thread library provides programmer with API for creating and managing
threads

® Two primary ways of implementing
e Library entirely in user space
e Kernel-level library supported by the OS
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g Pthreads

B May be provided either as user-level or kernel-level

m A POSIX standard (IEEE 1003.1c) API for thread creation
and synchronization

m API specifies behavior of the thread library, implementation
IS up to development of the library

®m Common in UNIX operating systems (Solaris, Linux, Mac
OS X)
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Java Threads

m Java threads are managed by the JVM

m Typically implemented using the threads model provided by
underlying OS

®m Java threads may be created by:

e Extending Thread class
e Implementing the Runnable interface
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Threading Issues

m Semantics of fork() and exec() system calls

Thread cancellation of target thread
e Asynchronous or deferred

Signal handling

Thread pools

Thread-specific data

Scheduler activations
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"’%r’ Semantics of fork() and exec()

m Does fork() duplicate only the calling thread or all threads?
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- Thread Cancellation

m Terminating a thread before it has finished
m Two general approaches:

e Asynchronous cancellation terminates the target
thread immediately

e Deferred cancellation allows the target thread to
periodically check if it should be cancelled
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Signal Handling

m Signals are used in UNIX systems to notify a process that a
particular event has occurred

m Asignal handler is used to process signals

1.

Signal is generated by particular event

2. Signal is delivered to a process
3. Signal is handled

m  Options:

Deliver the signal to the thread to which the signal applies
Deliver the signal to every thread in the process

Deliver the signal to certain threads in the process

Assign a specific threa to receive all signals for the process
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o Thread Pools

m Create a number of threads in a pool where they await work

m Advantages:
e Usually slightly faster to service a request with an existing thread
than create a new thread
e Allows the number of threads in the application(s) to be bound to
the size of the pool
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o Thread Specific Data

® Allows each thread to have its own copy of data

m Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)
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r & Scheduler Activations

® Both M:M and Two-level models require communication to maintain
the appropriate number of kernel threads allocated to the application

m Scheduler activations provide upcalls - a communication mechanism
from the kernel to the thread library

B This communication allows an application to maintain the correct
number kernel threads
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Operating System Examples

® Windows XP Threads
® Linux Thread
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> Windows XP Threads
L
ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
> and
synchronization
information
kernel TER
stack
» thread identifier
user
stack
thread-local
storage
kernel space user space
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&«%——( Linux Threads

flag meaning
CLONE FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE FILES The set of open files is shared.
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v a Windows XP Threads

m [Implements the one-to-one mapping, kernel-level
m Each thread contains

e Athreadid

e Register set

e Separate user and kernel stacks

e Private data storage area

m The register set, stacks, and private storage area are known
as the context of the threads

® The primary data structures of a thread include:
e ETHREAD (executive thread block)
e KTHREAD (kernel thread block)
e TEB (thread environment block)
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&g-—/ Linux Threads

B Linux refers to them as tasks rather than threads
® Thread creation is done through clone() system call

m clone() allows a child task to share the address space
of the parent task (process)
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End of Chapter 4
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