Chapter 4: Threads

Operating System Concepts — 8t Edition, Silberschatz, Galvin and Gagne ©2009

& Thread

m Thread Is a light weight process (LWP), is a basic unit of CPU utilization
®m [t comprises thread ID ,program counter,register set
®m [t shares code section and data section belonging to same program

Operating System Concepts — 8t Edition 4.2 Silberschatz, Galvin and Gagne ©2009

=

5 : -
277 Single and Multithreaded Processes
code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread —» <«— thread

single-threaded process multithreaded process

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 4.3

‘tr:f‘“fl/y—;;/ Benefits

® Responsiveness

® Resource Sharing

m Economy

m Utilization of MP architecture /Scalability

Operating System Concepts — 8" Edition 4.4 Silberschatz, Galvin and Gagne ©2009

*9?" Concurrent Execution on a Single-core System

singlecore | Ty To Ts Ty Ty To T3 T4 T4

time

Operating System Concepts — 8" Edition 4.5 Silberschatz, Galvin and Gagne ©2009

core 1 T4 Ta T4 Ta Ty

core 2 T2 T4 Tg T4 T2

Operating System Concepts — 8" Edition 4.6 Silberschatz, Galvin and Gagne ©2009

User Threads

® Thread management done by user-level threads library

m Three primary thread libraries:
e POSIX Pthreads
e Win32 threads
e Java threads

Operating System Concepts — 8" Edition 4.7 Silberschatz, Galvin and Gagne ©2009

p. h
f :\‘ e ,”'
‘h,‘,,‘ ‘ /’ {

S\

Kernel Threads

m Supported by the Kernel

m Examples
e Windows XP/2000
e Solaris
e Linux
e Tru64 UNIX
e Mac OS X

Operating System Concepts — 8t Edition 4.8 Silberschatz, Galvin and Gagne ©2009

v & Multithreading Models

A\,

® Many-to-One

B One-to-One

® Many-to-Many

! SO
ST = \‘;&,
=

9

U

Operating System Concents — g Edition 49 Silberschatz, Galvin and Gagne ©2009

=

P Many-to-One

A\,

® Many user-level threads mapped to single kernel thread
m Examples:

e Solaris Green Threads

e GNU Portable Threads

4\‘;\/

bR

A 2%
Operating System Concepts — 8" Edition 4.10 Silberschatz, Galvin and Gagne ©2009

SO

S5 Many-to-One Model

<«——user thread

<«— kernel thread

Operating System Concepts — 8" Edition 411 Silberschatz, Galvin and Gagne ©2009

i One-to-One

m Each user-level thread maps to kernel thread
m Examples

e Windows NT/XP/2000

e Linux

e Solaris 9 and later

Operating System Concepts — 8" Edition 4.12 Silberschatz, Galvin and Gagne ©2009

wr & One-to-one Model

<«—— user thread

B
O 6 G O

S
/ (Q
A ﬁ;:‘

Operating System Concepts — 8" Edition 4.13 Silberschatz, Galvin and Gagne ©2009

> Many-to-Many Model

m Allows many user level threads to be mapped to many kernel
threads

m Allows the operating system to create a sufficient number of
kernel threads

m Solaris 2,HP-UX,and Tru 64 UNIX

Operating System Concepts — 8" Edition 4.14 Silberschatz, Galvin and Gagne ©2009

o Many-to-Many Model

<«—— user thread

<«—— kernel thread

Operating System Concents — g Edition 415 Silberschatz, Galvin and Gagne ©2009

> & Thread Libraries

m Thread library provides programmer with API for creating and managing
threads

® Two primary ways of implementing
e Library entirely in user space
e Kernel-level library supported by the OS

AN
Operating System Concepts — 8" Edition 4.16 Silberschatz, Galvin and Gagne ©2009

|

g Pthreads

B May be provided either as user-level or kernel-level

m A POSIX standard (IEEE 1003.1c) API for thread creation
and synchronization

m API specifies behavior of the thread library, implementation
IS up to development of the library

®m Common in UNIX operating systems (Solaris, Linux, Mac
OS X)

e —

X\ .. " ¢
£ V‘»f; |
y o
/ (4
A ‘E P

Operating System Concepts — 8t Edition 4.17 Silberschatz, Galvin and Gagne ©2009

Java Threads

m Java threads are managed by the JVM

m Typically implemented using the threads model provided by
underlying OS

®m Java threads may be created by:

e Extending Thread class
e Implementing the Runnable interface

AN

N v,\“'“\

B
2 ‘u«\\"\
WS

“ A%

Operating System Concepts — 8" Edition 4.18 Silberschatz, Galvin and Gagne ©2009

e —

Threading Issues

m Semantics of fork() and exec() system calls

Thread cancellation of target thread
e Asynchronous or deferred

Signal handling

Thread pools

Thread-specific data

Scheduler activations

AU “’K:

A%
Operating System Concepts — 8" Edition 4.19 Silberschatz, Galvin and Gagne ©2009

\7\“\

N

«-J]
"’%r’ Semantics of fork() and exec()

m Does fork() duplicate only the calling thread or all threads?

\
PR]
<
“y

b

Operating System Concepts — 8" Edition 4.20 Silberschatz, Galvin and Gagne ©2009

¥
1,

- Thread Cancellation

m Terminating a thread before it has finished
m Two general approaches:

e Asynchronous cancellation terminates the target
thread immediately

e Deferred cancellation allows the target thread to
periodically check if it should be cancelled

Operating System Concepts — 8" Edition 4.21 Silberschatz, Galvin and Gagne ©2009

=
,_ﬁﬂ’?»"“‘-’-l

‘lg\ ol

y

Signal Handling

m Signals are used in UNIX systems to notify a process that a
particular event has occurred

m Asignal handler is used to process signals

1.

Signal is generated by particular event

2. Signal is delivered to a process
3. Signal is handled

m Options:

Deliver the signal to the thread to which the signal applies
Deliver the signal to every thread in the process

Deliver the signal to certain threads in the process

Assign a specific threa to receive all signals for the process

«.‘..’ '-h‘ ‘l
7 W
U 29X

Operating System Concepts — 8t Edition 4.22 Silberschatz, Galvin and Gagne ©2009

o Thread Pools

m Create a number of threads in a pool where they await work

m Advantages:
e Usually slightly faster to service a request with an existing thread
than create a new thread
e Allows the number of threads in the application(s) to be bound to
the size of the pool

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 423

o Thread Specific Data

® Allows each thread to have its own copy of data

m Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

A
Operating System Concepts — 8t Edition 4.24 Silberschatz, Galvin and Gagne ©2009

=

-

.

r & Scheduler Activations

® Both M:M and Two-level models require communication to maintain
the appropriate number of kernel threads allocated to the application

m Scheduler activations provide upcalls - a communication mechanism
from the kernel to the thread library

B This communication allows an application to maintain the correct
number kernel threads

e —

X\ .. " \
é V‘»f; S
y o
/ (4
A ‘E P

4.25 Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition

: =
S

e\

Operating System Examples

® Windows XP Threads
® Linux Thread

. Sl
ST = \\;& |
e

W

A

Operating System Concepts — 8" Edition 4.26 Silberschatz, Galvin and Gagne ©2009

7 -
LA ;
> Windows XP Threads
L
ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
> and
synchronization
information
kernel TER
stack
» thread identifier
user
stack
thread-local
storage
kernel space user space

A A
Operating System Concepts — 8" Edition 4.27 Silberschatz, Galvin and Gagne ©2009

&«%——(Linux Threads

flag meaning
CLONE FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE FILES The set of open files is shared.

Operating System Concepts — 8" Edition 4.28 Silberschatz, Galvin and Gagne ©2009

v a Windows XP Threads

m [Implements the one-to-one mapping, kernel-level
m Each thread contains

e Athreadid

e Register set

e Separate user and kernel stacks

e Private data storage area

m The register set, stacks, and private storage area are known
as the context of the threads

® The primary data structures of a thread include:
e ETHREAD (executive thread block)
e KTHREAD (kernel thread block)
e TEB (thread environment block)

e —

X\ ."'.
a:
U 29X

Operating System Concepts — 8" Edition 4.29 Silberschatz, Galvin and Gagne ©2009

&g-—/ Linux Threads

B Linux refers to them as tasks rather than threads
® Thread creation is done through clone() system call

m clone() allows a child task to share the address space
of the parent task (process)

Operating System Concepts — 8t Edition 4.30 Silberschatz, Galvin and Gagne ©2009

End of Chapter 4

Operating System Concepts — 8t Edition, Silberschatz, Galvin and Gagne ©2009

