
Chapter 06 Servlets

Advanced Java Programming. - 1 -

Chapter 06

Servlets
Contents:

 Background,

 The Life Cycle of a Servlet,
 The Java Servlet Development Kit, The Simple Servlet,

 The Servlet API
 The javax.Servlet Package, Reading

Servlet Parameters, Reading
Initialization Parameters

 The javax.servlet.http package, Handling
HTTP Requests and responses

 Using Cookies, Session
Tracking, Security

Issues, Exploring
Servlet

Chapter 06 Servlets

Advanced Java Programming. - 2 -

Introduction[Ref.1]

Servlets are small programs that execute on the server side of a Web
connection. Just as applets dynamically extend the functionality of a Web

browser, servlets dynamically extend the functionality of a Web server.
Servlets are generic extensions to Java-enabled servers. They are secure,

portable, and easy to use replacement for CGI. Servlet is a dynamically loaded

module that services requests from a Web server and executed within the Java
Virtual Machine. Because the servlet is running on the server side, it does not

depend on browser compatibility.

Servlet’s Job

 Read explicit data sent by client (form data)
 Read implicit data sent by client (request headers)

 Generate the results
 Send the explicit data back to client (HTML)

 Send the implicit data to client (status codes and response headers)

The Hypertext Transfer Protocol (HTTP) [Ref.1]

HTTP is the protocol that allows web servers and browsers to exchange

data over the web. It is a request and response protocol. The client requests a
file and the server responds to the request. HTTP uses reliable TCP

connections—by default on TCP port 80. HTTP (currently at version 1.1 at the
time of this writing) was first defined in RFC 2068. It was then refined in RFC

2616, which can be found at http://www.w3c.org/Protocols/.
In HTTP, it's always the client who initiates a transaction by establishing a

connection and sending an HTTP request. The server is in no position to contact

a client or make a callback connection to the client. Either the client or the
server can prematurely terminate a connection. For example, when using a web

browser we can click the Stop button on our browser to stop the download
process of a file, effectively closing the HTTP connection with the web server.

HTTP Requests [Ref.1]

http://www.w3c.org/Protocols/

Chapter 06 Servlets

Advanced Java Programming. - 3 -

An HTTP transaction begins with a request from the client browser and

ends with a response from the server. An HTTP request consists of three
components:

 Method——URI—Protocol/Version
 Request headers

 Entity body

An example of an HTTP request is the following:

GET /servlet/default.jsp HTTP/1.1

Accept: text/plain; text/html

Accept-Language: en-gb

Connection: Keep-Alive

Host: localhost

Referer: http://localhost/ch8/SendDetails.htm

User-Agent: Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)

Content-Length: 33

Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip, deflate

LastName=Franks&FirstName=Michael

The method—URI—protocol version appears as the first line of the request.

GET /servlet/default.jsp HTTP/1.1

where GET is the request method, /servlet/default.jsp represents the URI and
HTTP/1.1 the Protocol/Version section.

The request method will be explained in more details in the next section,

"HTTP request Methods."
The URI specifies an Internet resource completely. A URI is usually

interpreted as being relative to the server's root directory. Thus, it should
always begin with a forward slash /. A URL is actually a type of URI (see

http://www.ietf.org/rfc/rfc2396.txt). The Protocol version represents the

version of the HTTP protocol being used.
The request header contains useful information about the client

environment and the entity body of the request. For example, it could contain
the language the browser is set for, the length of the entity body, and so on.

Each header is separated by a carriage return/linefeed (CRLF) sequence.
Between the headers and the entity body, there is a blank line (CRLF)

that is important to the HTTP request format. The CRLF tells the HTTP server
where the entity body begins. In some Internet programming books, this CRLF

is considered the fourth component of an HTTP request.
In the previous HTTP request, the entity body is simply the following line:

LastName=Franks&FirstName=Michael

http://localhost/ch8/SendDetails.htm
http://www.ietf.org/rfc/rfc2396.txt)

Chapter 06 Servlets

Advanced Java Programming. - 4 -

The entity body could easily become much longer in a typical HTTP request.

Method Description

GET GET is the simplest, and probably, most used HTTP method. GET
simply retrieves the data identified by the URL. If the URL refers to a

script (CGI, servlet, and so on), it returns the data produced by the
script.

HEAD The HEAD method provides the same functionality as GET, but HEAD
only returns HTTP headers without the document body.

POST Like GET, POST is also widely used. Typically, POST is used in HTML
forms. POST is used to transfer a block of data to the server in the
entity body of the request.

OPTIONS The OPTIONS method is used to query a server about the capabilities
it provides. Queries can be general or specific to a particular resource.

PUT The PUT method is a complement of a GET request, and PUT stores
the entity body at the location specified by the URI. It is similar to the
PUT function in FTP.

DELETE The DELETE method is used to delete a document from the server.
The document to be deleted is indicated in the URI section of the
request.

TRACE The TRACE method is used to tract the path of a request through
firewall and multiple proxy servers. TRACE is useful for debugging

complex network problems and is similar to the traceroute tool.

Of the seven methods, only GET and POST are commonly used in an Internet

application.

HTTP Responses [Ref.1]

Similar to requests, an HTTP response also consists of three parts:

 Protocol—Status code—Description

 Response headers

 Entity body

The following is an example of an HTTP response:

HTTP/1.1 200 OK

Server: Microsoft-IIS/4.0

Date: Mon, 3 Jan 1998 13:13:33 GMT

Content-Type: text/html

Last-Modified: Mon, 11 Jan 1998 13:23:42 GMT

Content-Length: 112

Chapter 06 Servlets

Advanced Java Programming. - 5 -

<HTML>

<HEAD>

<TITLE>HTTP Response Example</TITLE></HEAD><BODY>

Welcome to Brainy Software

</BODY>

</HTML>

The first line of the response header is similar to the first line of the
request header. The first line tells you that the protocol used is HTTP version

1.1, the request succeeded (200 = success), and that everything went okay.
The response headers contain useful information similar to the headers in

the request. The entity body of the response is the HTML content of the

response itself. The headers and the entity body are separated by a sequence
of CRLFs.

Where are servlets?

Servlet Application Architecture

HTTPServlet

Chapter 06 Servlets

Advanced Java Programming. - 6 -

Applications of Java Servlets

 Building e-commerce store fronts

o Servlet builds an online catalog based on the contents of a database

o Customer places an order, which is processed by another servlet
 Servlets as wrappers for legacy systems

 Servlets interacting with EJB applications

Java Servlet alternatives [Ref.1]

ColdFusion. Allaire's ColdFusion provides HTML-like custom tags that can be

used to perform a number of operations, especially querying a database. This
technology had its glamorous time in the history of the World Wide Web as the

main technology for web application programming. Its glorious time has since
gone with the invention of other technologies.

Server-side JavaScript (SSJS). SSJS is an extension of the JavaScript

language, the scripting language that still rules client-side web programming.
SSJS can access Java classes deployed at the server side using the LiveWire

technology from Netscape.

PHP. PHP is an exciting open-source technology that has matured in recent
years. The technology provides easy web application development with its

session management and includes some built-in functionality, such as file
upload. The number of programmers embracing PHP as their technology of

choice has risen sharply in recent years.

Servlet. The servlet technology was introduced by Sun Microsystems in 1996.

JavaServer Pages (JSP). JSP is an extension of the servlet technology.

Active Server Pages (ASP). Microsoft's ASP employs scripting technologies

that work in Windows platforms, even though there have been efforts to port
this technology to other operating systems. Windows ASP works with the

Internet Information Server web server. This technology will soon be replaced
by Active Server Pages.NET.

Active Server Pages.NET (ASP.NET). This technology is part of Microsoft's

.NET initiative. Interestingly, the .NET Framework employs a runtime called the
Common Language Runtime that is very similar to Java Virtual Machine and
provides a vast class library available to all .NET languages and from ASP.NET

pages. ASP.NET is an exciting technology. It introduced several new
technologies including state management that does not depend on cookies or

URL rewriting.

Chapter 06 Servlets

Advanced Java Programming. - 7 -

The Benefits of Servlets

 Efficiency: More efficient – uses lightweight java threads as opposed to

individual processes.
 Persistency: Servlets remain in memory. They can maintain state

between requests.
 Portability: Since servlets are written in Java, they are platform

independent.

 Robustness: Error handling, Garbage collector to prevent problems with

memory leaks. Large class library – network, file, database, distributed
object components, security, etc.

 Extensibility: Creating new subclasses that suite your needs Inheritance,
polymorphism, etc.

 Security: Security provided by the server as well as the Java Security

Manager. It eliminates problems associated with executing cgi scripts
using operating system ―shells‖.

 Powerful: Servlets can directly talk to web server and facilitates database
connection pooling, session tracking etc.

 Convenient: Parsing and decoding HTML form data, reading and setting
HTTP headers, handling cookies, etc.

 Rapid development cycle: As a Java technology, servlets have access to
the rich Java library, which helps speed up the development process.

 Widespread acceptance: Java is a widely accepted technology. This

means that numerous vendors work on Java-based technologies. One of
the advantages of this widespread acceptance is that we can easily find

and purchase components that suit our needs, which saves precious
development time.

How a Servlet Works

A servlet is loaded by the servlet container the first time the servlet is

requested. The servlet then is forwarded the user request, processes it, and
returns the response to the servlet container, which in turn sends the response

back to the user. After that, the servlet stays in memory waiting for other

requests—it will not be unloaded from the memory unless the servlet container
sees a shortage of memory. Each time the servlet is requested, however, the

servlet container compares the timestamp of the loaded servlet with the servlet
class file. If the class file timestamp is more recent, the servlet is reloaded into

memory. This way, we don't need to restart the servlet container every time we
update our servlet.

Chapter 06 Servlets

Advanced Java Programming. - 8 -

Fig. How servlet works?

The Tomcat Servlet Container [Ref.1]

A number of servlet containers are available today these are listed below:
 Apache Tomcat

http://jakarta.apache.org/tomcat/
 Allaire/Macromedia JRun

http://www.macromedia.com/software/jrun/
 New Atlanta ServletExec

http://www.servletexec.com/
 Gefion Software LiteWebServer

http://www.gefionsoftware.com/LiteWebServer/
 Caucho's Resin

http://www.caucho.com/
The most popular one—and the one recognized as the official servlet/JSP

container—is Apache Tomcat. Originally designed by Sun Microsystems, Tomcat
source code was handed over to the Apache Software Foundation in October

1999. In this new home, Tomcat was included as part of the Jakarta Project,

Receive Request

Is servlet

loaded?

No

Yes

Is servlet
current?

No

Yes
Load Request

Send response

Process Request

http://jakarta.apache.org/tomcat/
http://www.macromedia.com/software/jrun/
http://www.servletexec.com/
http://www.gefionsoftware.com/LiteWebServer/
http://www.caucho.com/

Chapter 06 Servlets

Advanced Java Programming. - 9 -

one of the projects of the Apache Software Foundation. Working through the

Apache process, Apache, Sun, and other companies—with the help of volunteer
programmers worldwide—turned Tomcat into a world-class servlet reference

implementation. Currently we are using Apache Tomcat version 6.0.18.
Tomcat by itself is a web server. This means that you can use Tomcat to

service HTTP requests for servlets, as well as static files (HTML, image files, and
so on). In practice, however, since it is faster for non-servlet, non-JSP

requests, Tomcat normally is used as a module with another more robust web

server, such as Apache web server or Microsoft Internet Information Server.
Only requests for servlets or JSP pages are passed to Tomcat.

For writing a servlet, we need at Java Development Kit installed on our

computer. Tomcat is written purely in Java.

Steps to Running Your First Servlet [Ref.1]

After we have installed and configured Tomcat, we can put it into service.
Basically, we need to follow steps to go from writing our servlet to running it.

These steps are summarized as follows:

 Write the servlet source code. We need to import the javax.servlet

package and the javax.servlet.http package in your source file.
 Compile your source code.
 Create a deployment descriptor.

 Run Tomcat.

 Call your servlet from a web browser.

1. Write the Servlet Source Code

In this step, we prepare our source code. We can write the source code
ourself using any text editor.

The following program shows a simple servlet called TestingServlet. The
file is named TestingServlet.java. The servlet sends a few HTML tags and some

text to the browser.

//TestingServlet.java

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class TestingServlet extends HttpServlet

{

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

Chapter 06 Servlets

Advanced Java Programming. - 10 -

PrintWriter out = response.getWriter();

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>Servlet Testing</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

out.println("Welcome to the Servlet Testing Center");

out.println("</BODY>");

out.println("</HTML>");

}

}

Now, save TestingServlet.java file to /bin directory of JDK.

2. Compiling the source code

For our servlet source code to compile, we need to include the path to the

servlet-api.jar file in our CLASSPATH environment variable. The servlet-api.jar

is located in the C:\Program Files\Apache Software Foundation\Tomcat 6.0\
directory. Here, the drive name depends upon our selection while installation of

Tomcat 6.0 on computer. So, compile the file using following way:

javac TestingServlet.java -classpath "G:\Program Files\Apache

Software Foundation\Tomcat 6.0\lib\servlet-api.jar"

After successful compilation, we will get a class file named
TestingServlet.class. Now, copy that class file into directory \classes under web-

inf as shown in the following figure. All the servlet classes resides in this
directory.

3. Create the Deployment Descriptor

A deployment descriptor is an optional component in a servlet application.
The descriptor takes the form of an XML document called web.xml and must be

located in the WEB-INF directory of the servlet application. When present, the
deployment descriptor contains configuration settings specific to that

application. In order to create the deployment descriptor, we now need to

create or edit a web.xml file and place it under the WEB-INF directory. The
web.xml for this example application must have the following content.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<servlet>

<servlet-name>Testing</servlet-name>

http://java.sun.com/dtd/web-app_2_3.dtd

Chapter 06 Servlets

Advanced Java Programming. - 11 -

<servlet-class>TestingServlet</servlet-class>

<servlet-mapping>

<servlet-name>TestingServlet</servlet-name>

<url-pattern>/servlets/servlet/TestingServlet

</url-pattern>

</servlet-mapping>

</servlet>

</web-app>

The web.xml file has one element—web-app. We should write all our

servlets under <web-app>. For each servlet, we have a <servlet> element and
we need the <servlet-name> and <servlet-class> elements. The <servlet-

name> is the name for our servlet, by which it is known Tomcat. The <servlet-

class> is the compiled file of your servlet without the .class extension.

Location of

servlet-api.jar file

Location of

web.xml file

Location for storing .java
and .class files

Fig. Apache Tomcat 6.0 Directory Structure.
We can also add multiple servlet names in our file using multiple servlet

tags. The url-pattern suggests the url by which we are going to class our
servlet in the web browser. Instead of doing this we can just modify the

contents of web.xml by adding the names and mapping of our servlet code.

4. Run Tomcat

Chapter 06 Servlets

Advanced Java Programming. - 12 -

If Tomcat is not already running, we need to start it by selecting the

option ―monitor tomcat‖ from srart menu. We will find the icon of Apache
Tomcat on the taskbar when it is running.

5. Call Your Servlet from a Web Browser

Now, we can call our servlet from a web browser. By default, Tomcat runs

on port 8080. The URL for that servlet has the following format:

http://domain-name/virtual-directory/servlet/servlet-name

If we run the web browser from the same computer as Tomcat, you can
replace the domain-name part with "localhost". In that case, the URL for your

servlet is:

http://localhost:8080/examples/servlets/servlet/TestingServlet

Typing the URL in the Address or Location box of our web browser will

give you the string "Welcome to the Servlet Testing Center," as shown in Figure

1.5.

The javax.servlet package [Ref.1]

The javax.servlet package contains seven interfaces, three classes, and
two exceptions. The seven interfaces are as follows:

 RequestDispatcher

 Servlet

 ServletConfig

 ServletContext

 ServletRequest

http://domain-name/virtual-directory/servlet/servlet-name

Chapter 06 Servlets

Advanced Java Programming. - 13 -

 ServletResponse

 SingleThreadModel

The three classes are as follows:

 GenericServlet

 ServletInputStream

 ServletOutputStream

And, finally, the exception classes are these:

 ServletException

 UnavailableException

The object model of the javax.servlet package is shown in figure below:

The Servlet‘s Life Cycle

Applet life cycle contains methods: init(), start(), paint(), stop(), and

destroy() – appropriate methods called based on user action. Similarly,
servlets operate in the context of a request and response model managed by a

servlet engine The engine does the following:

Chapter 06 Servlets

Advanced Java Programming. - 14 -

ServletConfig

Servlet Class
Garbage
Collection

Initialization

and Loading

Destroying the servlet
by calling the

destroy method

Calling the
init method

Servicing requests by
calling the

service method

 Loads the servlet when it is first requested.

 Calls the servlet‘s init() method.

 Handles any number of requests by calling the servlet‘s service()
method.

 When shutting down, calls each servlet‘s destroy() method.

Fig. Servlet‘s Life Cycle

The init() method

 It request for a servlet received by the servlet engine.
 Checks to see if the servlet is already loaded.

 If not, uses a class loader to get the required servlet class and
instantiates it by calling the constructor method.

 After the servlet is loaded, but before it services any requests, the init ()
method is called.

 Inside init(), the resources used by the servlet are initialized. E.g:
establishing database connection.

 This method is called only once just before the servlet is placed into

service.
 The init() method takes a ServletConfig object as a parameter. Its

signature is:
public void init(ServletConfig config) throws ServletException

 Most common way of doing this is to have it call the super.init() passing
it the ServletConfig object.

The service() method

Chapter 06 Servlets

Advanced Java Programming. - 15 -

 The service() method handles all requests sent by a client.

 It cannot start servicing requests until the init() method has been
executed.

 Only a single instance of the servlet is created and the servlet engine
dispatches each request in a single thread.

 The service() method is used only when extending GenericServlet class.

 Since servlets are designed to operate in the HTTP environment, the

HttpServlet class is extended.
 The service(HttpServletRequest, HttpServletResponse) method examines

the request and calls the appropriate doGet() or doPost() method.
 A typical Http servlet includes overrides to one or more of these

subsidiary methods rather than an override to service().

The destroy() method

 This method signifies the end of a servlet‘s life.
 The resources allocated during init() are released.

 Save persistent information that will be used the next time the servlet is
loaded.

 The servlet engine unloads the servlet.

 Calling destroy() yourself will not acutally unload the servlet. Only the
servlet engine can do this.

Demonstrating the Life Cycle of a Servlet [Ref.1]

The following program contains the code for a servlet named

PrimitiveServlet, a very simple servlet that exists to demonstrate the life cycle
of a servlet. The PrimitiveServlet class implements javax.servlet.Servlet (as all

servlets must) and provides implementations for all the five methods of servlet.

What it does is very simple. Each time any of the init, service, or destroy
methods is called, the servlet writes the method's name to the console.

import javax.servlet.*;

import java.io.IOException;

public class PrimitiveServlet implements Servlet

{

public void init(ServletConfig config) throws ServletException {

System.out.println("init");

}

public void service(ServletRequest request,

ServletResponse response)

throws ServletException, IOException {

System.out.println("service");

}

public void destroy() {

Chapter 06 Servlets

Advanced Java Programming. - 16 -

System.out.println("destroy");

}

public String getServletInfo() {

return null;

}

public ServletConfig getServletConfig() {

return null;

}

}

The web.xml File for PrimitiveServlet:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<servlet>

<servlet-name>PrimitiveServlet</servlet-name>

<servlet-class>PrimitiveServlet</servlet-class>

</servlet>

</web-app>

We should then be able to call this servlet from our browser by typing the

following URL:

http://localhost:8080/examples/servlets/servlet/PrimitiveServlet

The first time the servlet is called, the console displays these two lines:

init

service

This tells us that the init method is called, followed by the service
method. However, on subsequent requests, only the service method is called.

The servlet adds the following line to the console:

service

This proves that the init method is called only once.

Requests and Responses [Ref.1]

Requests and responses are what a web application is all about. In a
servlet application, a user using a web browser sends a request to the servlet
container, and the servlet container passes the request to the servlet.

http://java.sun.com/dtd/web-app_2_3.dtd

Chapter 06 Servlets

Advanced Java Programming. - 17 -

In a servlet paradigm, the user request is represented by the

ServletRequest object passed by the servlet container as the first argument to
the service method. The service method's second argument is a

ServletResponse object, which represents the response to the user.

The ServletRequest Interface [Ref.1]

The ServletRequest interface defines an object used to encapsulate

information about the user's request, including parameter name/value pairs,
attributes, and an input stream.

The ServletRequest interface provides important methods that enable us

to access information about the user. For example, the getParameterNames
method returns an Enumeration containing the parameter names for the

current request. In order to get the value of each parameter, the
ServletRequest interface provides the getParameter method.

The getRemoteAddress and getRemoteHost methods are two methods
that we can use to retrieve the user's computer identity. The first returns a

string representing the IP address of the computer the client is using, and the
second method returns a string representing the qualified host name of the

computer.
The following example, shows a ServletRequest object in action. The

example consists of an HTML form in a file named index.html and a servlet
called RequestDemoServlet.

The index.html file:
<HTML>

<HEAD>

<TITLE>Sending a request</TITLE>

</HEAD>

<BODY>

<FORM ACTION =

http://localhost:8080/examples/servlets/servlet/RequestDemoServlet

METHOD="POST">

Author: <INPUT TYPE="TEXT" NAME="Author">

<INPUT TYPE="SUBMIT" NAME="Submit">

<INPUT TYPE="RESET" VALUE="Reset">

</FORM>

</BODY>

</HTML>

The RequestDemoServlet.java file:
import javax.servlet.*;

import java.util.Enumeration;

import java.io.IOException;

public class RequestDemoServlet implements Servlet {

public void init(ServletConfig config) throws ServletException {

Chapter 06 Servlets

Advanced Java Programming. - 18 -

}

public void destroy() {

}

public void service(ServletRequest request,

ServletResponse response)

throws ServletException, IOException {

System.out.println("Server Port: " + request.getServerPort());

System.out.println("Server Name: " + request.getServerName());

System.out.println("Protocol: " + request.getProtocol());

System.out.println("Character Encoding: " +

request.getCharacterEncoding());

System.out.println("Content Type: " +

request.getContentType());

System.out.println("Content Length: " +

request.getContentLength());

System.out.println("Remote Address: " +

request.getRemoteAddr());

System.out.println("Remote Host: " + request.getRemoteHost());

System.out.println("Scheme: " + request.getScheme());

Enumeration parameters = request.getParameterNames();

while (parameters.hasMoreElements()) {

String parameterName = (String) parameters.nextElement();

System.out.println("Parameter Name: " + parameterName);

System.out.println("Parameter Value: " +

request.getParameter(parameterName));

}

Enumeration attributes = request.getAttributeNames();

while (attributes.hasMoreElements()) {

String attribute = (String) attributes.nextElement();

System.out.println("Attribute name: " + attribute);

System.out.println("Attribute value: " +

request.getAttribute(attribute));

}

}

public String getServletInfo() {

return null;

}

public ServletConfig getServletConfig() {

return null;

}

}

The snapshot of index.html:

Chapter 06 Servlets

Advanced Java Programming. - 19 -

After pressing submit button, we will get following window:

The ServletResponse Interface [Ref.1]

The ServletResponse interface represents the response to the user. The

most important method of this interface is getWriter, from which we can obtain

a java.io.PrintWriter object that we can use to write HTML tags and other text
to the user.

The codes of the program given below offer an HTML file named
index2.html and a servlet whose service method is overridden with code that

outputs some HTML tags to the user. This servlet modifies the example below
retrieves various information about the user. Instead of sending the information

to the console, the service method sends it back to the user.

index2.html
<HTML>

<HEAD>

<TITLE>Sending a request</TITLE>

</HEAD>

<BODY>

Chapter 06 Servlets

Advanced Java Programming. - 20 -

<FORM ACTION=

http://localhost:8080/examples/servlets/servlet/RequestDemoServlet

METHOD="POST">

Author: <INPUT TYPE="TEXT" NAME="Author">

<INPUT TYPE="SUBMIT" NAME="Submit">

<INPUT TYPE="RESET" VALUE="Reset">

</FORM>

</BODY>

</HTML>

ResponseDemoServlet.java
import javax.servlet.*;

import java.io.PrintWriter;

import java.io.IOException;

import java.util.Enumeration;

public class ResponseDemoServlet implements Servlet {

public void init(ServletConfig config) throws ServletException {

}

public void destroy() {

}

public void service(ServletRequest request,

ServletResponse response)

throws ServletException, IOException {

PrintWriter out = response.getWriter();

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>");

out.println("ServletResponse");

out.println("</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

out.println("Demonstrating the ServletResponse object");

out.println("
");

out.println("
Server Port: " + request.getServerPort());

out.println("
Server Name: " + request.getServerName());

out.println("
Protocol: " + request.getProtocol());

out.println("
Character Encoding: " +

request.getCharacterEncoding());

out.println("
Content Type: " + request.getContentType());

out.println("
Content Length: " +

request.getContentLength());

out.println("
Remote Address: " + request.getRemoteAddr());

out.println("
Remote Host: " + request.getRemoteHost());

out.println("
Scheme: " + request.getScheme());

Enumeration parameters = request.getParameterNames();

while (parameters.hasMoreElements()) {

Chapter 06 Servlets

Advanced Java Programming. - 21 -

String parameterName = (String) parameters.nextElement();

out.println("
Parameter Name: " + parameterName);

out.println("
Parameter Value: " +

request.getParameter(parameterName));

}

Enumeration attributes = request.getAttributeNames();

while (attributes.hasMoreElements()) {

String attribute = (String) attributes.nextElement();

out.println("
Attribute name: " + attribute);

out.println("
Attribute value: " +

request.getAttribute(attribute));

}

out.println("</BODY>");

out.println("</HTML>");

}

public String getServletInfo() {

return null;

}

public ServletConfig getServletConfig() {

return null;

}

}

Window of index2.html

Window after clicking the ‗submit‘ button

Chapter 06 Servlets

Advanced Java Programming. - 22 -

GenericServlet [Ref.1]

Till this point, we have been creating servlet classes that implement the
javax.servlet.Servlet interface. Everything works fine, but there are two

annoying things that we've probably noticed:
1. We have to provide implementations for all five methods of the Servlet

interface, even though most of the time we only need one. This makes

your code look unnecessarily complicated.
2. The ServletConfig object is passed to the init method. We need to

preserve this object to use it from other methods. This is not difficult, but

it means extra work.
The javax.servlet package provides a wrapper class called GenericServlet

that implements two important interfaces from the javax.servlet package:
Servlet and ServletConfig, as well as the java.io.Serializable interface. The

GenericServlet class provides implementations for all methods, most of which
are blank. We can extend GenericServlet and override only methods that we

need to use. Clearly, this looks like a better solution.
The program given below called SimpleServlet that extends

GenericServlet. The code provides the implementation of the service method
that sends some output to the browser. Because the service method is the only

method we need, only this method needs to appear in the class. Compared to
all servlet classes that implement the javax.servlet.Servlet interface directly,

SimpleServlet looks much cleaner and clearer.

Chapter 06 Servlets

Advanced Java Programming. - 23 -

import javax.servlet.*;

import java.io.IOException;

import java.io.PrintWriter;

public class SimpleServlet extends GenericServlet {

public void service(ServletRequest request,

ServletResponse response)

throws ServletException, IOException {

PrintWriter out = response.getWriter();

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>");

out.println("Extending GenericServlet");

out.println("</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

out.println("Extending GenericServlet makes your code

simpler.");

out.println("</BODY>");

out.println("</HTML>");

}

}

Output window:

The HttpServlet Class [Ref.1]

The HttpServlet class extends the javax.servlet.GenericServlet class. The
HttpServlet class also adds a number of interesting methods to use. The most
important are the six doxxx methods that get called when a related HTTP

request method is used. The six methods are doPost, doPut, doGet, doDelete,
doOptions and doTrace. Each doxxx method is invoked when a corresponding

HTTP method is used. For instance, the doGet method is invoked when the
servlet receives an HTTP request that was sent using the GET method. Of the

six doxxx methods, the doPost and the doGet methods are the most frequently
used.

Chapter 06 Servlets

Advanced Java Programming. - 24 -

The doPost method is called when the browser sends an HTTP request

using the POST method. The POST method is one of the two methods that can
be used by an HTML form. Consider the following HTML form at the client side:

<FORM ACTION="Register" METHOD="POST">

<INPUT TYPE=TEXT Name="firstName">

<INPUT TYPE=TEXT Name="lastName">

<INPUT TYPE=SUBMIT>

</FORM>

When the user clicks the Submit button to submit the form, the browser
sends an HTTP request to the server using the POST method. The web server

then passes this request to the Register servlet and the doPost method of the
servlet is invoked. Using the POST method in a form, the parameter

name/value pairs of the form are sent in the request body. For example, if we
use the preceding form as an example and enter ‗Sunil‘ as the value for

firstName and ‗Go‘ as the value for lastName, we will get the following result in
the request body:

firstName=Sunil

lastName=Go

An HTML form can also use the GET method; however, POST is much
more often used with HTML forms.

The doGet method is invoked when an HTTP request is sent using the
GET method. GET is the default method in HTTP. When we type a URL, such as

www.yahoo.com, our request is sent to Yahoo! using the GET method. If we
use the GET method in a form, the parameter name/value pairs are appended

to the URL. Therefore, if we have two parameters named firstName and
lastName in our form, and the user enters Sunil and Go, respectively, the URL

to our servlet will become something like the following:

http://yourdomain/myApp/Register?firstName=Sunil&lastName=Go

Upon receiving a GET method, the servlet will call its doGet method. The
service method of HttpServlet class is as follows:

protected void service(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

//Demonstration of doGet() and doPost() methods.
import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

http://www.yahoo.com/
http://yourdomain/myApp/Register?firstName=Sunil&lastName=Go

Chapter 06 Servlets

Advanced Java Programming. - 25 -

public class RegisterServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>The GET method</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

out.println("The servlet has received a GET. " +

"Now, click the button below.");

out.println("
");

out.println("<FORM METHOD=POST>");

out.println("<INPUT TYPE=SUBMIT VALUE=Submit>");

out.println("</FORM>");

out.println("</BODY>");

out.println("</HTML>");

}

public void doPost(

HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>The POST method</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

out.println("The servlet has received a POST. Thank you.");

out.println("</BODY>");

out.println("</HTML>");

}

}

When the servlet is first called from a web browser by typing the URL to

the servlet in the Address or Location box, GET is used as the request method.
At the server side, the doGet method is invoked. The servlet sends a string

saying "The servlet has received a GET. Now, click the button below." plus an
HTML form. The output is shown in Figure below:

Chapter 06 Servlets

Advanced Java Programming. - 26 -

The form sent to the browser uses the POST method. When the user
clicks the button to submit the form, a POST request is sent to the server. The

servlet then invokes the doPost method, sending a String saying, "The servlet
has received a POST. Thank you," to the browser. The output of doPost is

shown in Figure below:

HttpServletRequest Interface [Ref.1]

In addition to providing several more protocol-specific methods in the
HttpServlet class, the javax.servlet.http package also provides more

sophisticated request and response interfaces.

Obtaining HTTP Request Headers from HttpServletRequest [Ref.1]

The HTTP request that a client browser sends to the server includes an
HTTP request header with important information, such as cookies and the

referer. We can access these headers from the HttpServletRequest object
passed to a doxxx method.

The following example demonstrates how we can use the

HttpServletRequest interface to obtain all the header names and sends the
header name/value pairs to the browser.

//Obtaining HTTP request Headers
import javax.servlet.*;

Chapter 06 Servlets

Advanced Java Programming. - 27 -

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class RegisterServlet extends HttpServlet

{

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

Enumeration enumeration = request.getHeaderNames();

while(enumeration.hasMoreElements())

{

String header = (String) enumeration.nextElement();

out.println(header + ": " + request.getHeader(header) +

"
");

}

}

}

The RegisterServlet given above uses the getHeaderNames and the

getHeader methods. The getHeaderNames is first called to obtain an

Enumeration containing all the header names found in the client request. The
value of each header then is retrieved by using the getHeader method, passing

a header name.
The output of the code depends on the client environment, such as the

browser used and the operating system of the client's machine. For example,

some browsers might send cookies to the server. Also, whether the servlet is
requested by the user typing the URL in the Address/Location box or by clicking

a hyperlink also accounts for the presence of an HTTP request header called
referer.

The output of the code above is shown in Figure below:

Output obtained in Google Chrome:

Chapter 06 Servlets

Advanced Java Programming. - 28 -

Output obtained in Internet Explorer 7:

Obtaining the Query String from HttpServletRequest [Ref.1]

The next important method is the getQueryString method, which is used
to retrieve the query string of the HTTP request. A query string is the string on

the URL to the right of the path to the servlet.
If we use the GET method in an HTML form, the parameter name/value

pairs will be appended to the URL. The code in Listing 3.3 is a servlet named

HttpRequestDemoServlet that displays the value of the request's query string
and a form.

//Obtaining the Query String
import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class HttpRequestDemoServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>Obtaining the Query String</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

out.println("Query String: " + request.getQueryString() +

"
");

out.println("<FORM METHOD=GET>");

Chapter 06 Servlets

Advanced Java Programming. - 29 -

out.println("
First Name: <INPUT TYPE=

TEXT NAME=FirstName>");

out.println("
Last Name: <INPUT TYPE=TEXT NAME=LastName>");

out.println("
<INPUT TYPE=SUBMIT VALUE=Submit>");

out.println("</FORM>");

out.println("</BODY>");

out.println("</HTML>");

}

}

When the user enters the URL to the servlet in the web browser and the
servlet is first called, the query string is null, as shown in Figure below:

After we enter some values into the HTML form and submit the form, the

page is redisplayed. Note that now there is a string added to the URL. The

query string has a value of the parameter name/value pairs separated by an
ampersand (&). The page is shown in Figure below:

Obtaining the Parameters from HttpServletRequest [Ref.1]

We have seen that we can get the query string containing a value. This

means that we can get the form parameter name/value pairs or other values
from the previous page. We should not use the getQueryString method to

Chapter 06 Servlets

Advanced Java Programming. - 30 -

obtain a form's parameter name/value pairs, however, because this means we

have to parse the string ourselves. We can use some other methods in
HttpServletRequest to get the parameter names and values: the

getParameterNames and the getParameter methods.
The getParameterNames method returns an Enumeration containing the

parameter names. In many cases, however, we already know the parameter
names, so we don't need to use this method. To get a parameter value, we use

the getParameter method, passing the parameter name as the argument.

The following example demonstrates how we can use the
getParameterNames and the getParameter methods to display all the

parameter names and values from the HTML form from the previous page. The

code is given below:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class HttpRequestDemoServlet1 extends HttpServlet

{

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>Obtaining the Parameter</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

out.println("The request's parameters are:
");

Enumeration enumeration = request.getParameterNames();

while (enumeration.hasMoreElements())

{

String parameterName = (String) enumeration.nextElement();

out.println(parameterName + ": " +

request.getParameter(parameterName) + "
");

}

out.println("<FORM METHOD=GET>");

out.println("
First Name: <INPUT TYPE=TEXT

NAME=FirstName>");

out.println("
Last Name: <INPUT TYPE=TEXT NAME=LastName>");

out.println("
<INPUT TYPE=SUBMIT VALUE=Submit>");

out.println("</FORM>");

out.println("</BODY>");

out.println("</HTML>");

}

}

Chapter 06 Servlets

Advanced Java Programming. - 31 -

When the servlet is first called, it does not have any parameter from the

previous request. Therefore, the no parameter name/value pair is displayed, as
shown in Figure below:

On subsequent requests, the user should enter values for both the
firstName and lastName parameters. This is reflected on the next page, which

is shown in Figure below:

Manipulating Multi-Value Parameters [Ref.1]

We may have a need to use parameters with the same name in our form.
This case might arise, for example, when we are using check box controls that

can accept multiple values or when we have a multiple-selection HTML select

control. In situations like these, we can't use the getParameter method because
it will give us only the first value. Instead, we use the getParameterValues

method.
The getParameterValues method accepts one argument: the parameter

name. It returns an array of string containing all the values for that parameter.

If the parameter of that name is not found, the getParameterValues method will
return a null.

Chapter 06 Servlets

Advanced Java Programming. - 32 -

The following example illustrates the use of the getParameterValues

method to get all favorite music selected by the user. The code for this servlet
is given in program below:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class HttpRequestDemoServlet2 extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>Obtaining Multi-Value Parameters</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

out.println("
");

out.println("
Select your favorite singer:");

out.println("
<FORM METHOD=POST>");

out.println("
<INPUT TYPE=CHECKBOX " +

"NAME=favoriteMusic VALUE=Alka>Alka");

out.println("
<INPUT TYPE=CHECKBOX " +

"NAME=favoriteMusic VALUE=Shreya>Shreya");

out.println("
<INPUT TYPE=CHECKBOX " +

"NAME=favoriteMusic VALUE=Sunidhi>Sunidhi");

out.println("
<INPUT TYPE=CHECKBOX " +

"NAME=favoriteMusic VALUE=Kavita>Kavita");

out.println("
<INPUT TYPE=SUBMIT VALUE=Submit>");

out.println("</FORM>");

out.println("</BODY>");

out.println("</HTML>");

}

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

String[] values = request.getParameterValues("favoriteMusic");

response.setContentType("text/html");

PrintWriter out = response.getWriter();

if (values != null) {

int length = values.length;

out.println("You have selected: ");

for (int i=0; i<length; i++) {

out.println("
" + values[i]);

}

}

Chapter 06 Servlets

Advanced Java Programming. - 33 -

}

}

When the servlet is first called, the doGet method is invoked and the

method sends a form to the web browser. The form has four check box controls

with the same name: favoriteMusic. Their values are different, however. This is
shown in Figure below:

When the user selects the value(s) of the check boxes, the browser sends
all selected values. In the server side, we use the getParameterValues to

retrieve all values sent in the request. This is shown in Figure below:

Note that we use the POST method for the form; therefore, the
parameter name/value pairs are retrieved in the doPost method.

Chapter 06 Servlets

Advanced Java Programming. - 34 -

HttpServletResponse [Ref.1]

The HttpServletResponse interface provides several protocol-specific
methods not available in the javax.servlet.ServletResponse interface.

The HttpServletResponse interface extends the ServletResponse
interface. Till in the examples, we have seen that we always use two of the

methods in HttpServletResponse when sending output to the browser:

setContentType and getWriter.

response.setContentType("text/html");

PrintWriter out = response.getWriter();

There is more to it, however. The addCookie method sends cookies to the
browser. We also use methods to manipulate the URLs sent to the browser.

Another interesting method in the HttpServletResponse interface is the
setHeader method. This method allows us to add a name/value field to the

response header.

We can also use a method to redirect the user to another page:
sendRedirect. When we call this method, the web server sends a special

message to the browser to request another page. Therefore, there is always a
round trip to the client side before the other page is fetched. This method is

used frequently and its use is illustrated in the following example. The example
below shows a Login page that prompts the user to enter a user name and a

password. If both are correct, the user will be redirected to a Welcome page. If
not, the user will see the same Login page.

When the servlet is first requested, the servlet's doGet method is called.
The doGet method then outputs the form. The user can then enter the user

name and password, and submit the form. Note that the form uses the POST
method, which means that at the server side, the doPost method is invoked,

and the user name and password are checked against some predefined values.
If the user name and password match, the user is redirected to a Welcome

page. If not, the doPost method outputs the Login form again along with an

error message.

public class LoginServlet extends HttpServlet {

private void sendLoginForm(HttpServletResponse response,

boolean withErrorMessage)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>Login</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

Chapter 06 Servlets

Advanced Java Programming. - 35 -

if (withErrorMessage)

out.println("Login failed. Please try again.
");

out.println("
");

out.println("
Please enter your user name and password.");

out.println("
<FORM METHOD=POST>");

out.println("
User Name: <INPUT TYPE=TEXT NAME=userName>");

out.println("
Password: <INPUT TYPE=PASSWORD

NAME=password>");

out.println("
<INPUT TYPE=SUBMIT VALUE=Submit>");

out.println("</FORM>");

out.println("</BODY>");

out.println("</HTML>");

}

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

sendLoginForm(response, false);

}

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

String userName = request.getParameter("userName");

String password = request.getParameter("password");

if (userName!=null && password!=null &&

userName.equals("james.bond") && password.equals("007")) {

response.sendRedirect("http://domain/app/WelcomePage");

}

else

sendLoginForm(response, true);

}

}

http://domain/app/WelcomePage

Chapter 06 Servlets

Advanced Java Programming. - 36 -

In the code given above, private method called sendLoginForm that

accepts an HttpServletResponse object and a boolean that signals whether an
error message be sent along with the form. This sendLoginForm method is

called both from the doGet and the doPost methods. When called from the
doGet method, no error message is given, because this is the first time the user

requests the page. The withErrorMessage flag is therefore false. When called
from the doPost method, this flag is set to true because the sendLoginForm

method is only invoked from doPost if the user name and password did not

match.
The Login page, when it is first requested, is shown in Figure above. The

Login page, after a failed attempt to log in, is shown in Figure below:

Sending an Error Code [Ref.1]

The HttpServletResponse also allows us to send pre-defined error
messages. The interface defines a number of public static final integers that all

start with SC_. For example, SC_FORBIDDEN will be translated into an HTTP
error 403.

Along with the error code, we also can send a custom error message.
Instead of redisplaying the Login page when a failed login occurs, we can send

an HTTP error 403 plus our error message. To do this, replace the call to the
sendLoginForm in the doPost method with the following:

response.sendError(response.SC_FORBIDDEN, "Login failed.");

The user will see the screen in following Figure when a login fails.

Chapter 06 Servlets

Advanced Java Programming. - 37 -

Request Dispatching [Ref.1]

In some circumstances, we may want to include the content from an
HTML page or the output from another servlet. Additionally, there are cases

that require that we pass the processing of an HTTP request from our servlet to
another servlet. The current servlet specification responds to these needs with

an interface called RequestDispatcher, which is found in the javax.servlet
package. This interface has two methods, which allow you to delegate the

request-response processing to another resource: include and forward. Both
methods accept a ServletRequest object and a ServletResponse object as

arguments.
As the name implies, the include method is used to include content from

another resource, such as another servlet, a JSP page, or an HTML page. The
method has the following signature:

public void include(javax.servlet.ServletRequest request,

javax.servlet.ServletResponse response)

throws javax.servlet.ServletException, java.io.IOException

The forward method is used to forward a request from one servlet to

another. The original servlet can perform some initial tasks on the
ServletRequest object before forwarding it. The signature of the forward

method is as follows:

public void forward(javax.servlet.ServletRequest request,

javax.servlet.ServletResponse response)

throws javax.servlet.ServletException, java.io.IOException

The Difference Between sendRedirect and forward:

Chapter 06 Servlets

Advanced Java Programming. - 38 -

The sendRedirect method works by sending a status code that tells the

browser to request another URL. This means that there is always a round trip to
the client side. Additionally, the previous HttpServletRequest object is lost. To

pass information between the original servlet and the next request, we
normally pass the information as a query string appended to the destination

URL.
The forward method, on the other hand, redirects the request without the

help from the client's browser. Both the HttpServletRequest object and the

HttpServletResponse object also are passed to the new resource.
In order to perform a servlet include or forward, we first need to obtain a

RequestDispatcher object. We can obtain a RequestDispatcher object three

different ways, as follows:

 Use the getRequestDispatcher method of the ServletContext interface,
passing a String containing the path to the other resource. The path is

relative to the root of the ServletContext.
 Use the getRequestDispatcher method of the ServletRequest interface,

passing a String containing the path to the other resource. The path is
relative to the current HTTP request.

 Use the getNamedDispatcher method of the ServletContext interface,
passing a String containing the name of the other resource.

Including Static Content [Ref.1]

Sometimes we need to include static content, such as HTML pages or
image files that are prepared by a web graphic designer. We can do this by

using the same technique for including dynamic resources.
The following example shows a servlet named FirstServlet that includes

an HTML file named main.html. The servlet class file is located in the WEB-

INF\classes directory, whereas the AdBanner.html file, like other HTML files,
resides in the \examples directory. The servlet is given in program below and

the HTML file is also given.

//Including Static Content
import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class FirstServlet extends HttpServlet

{

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

RequestDispatcher rd

= request.getRequestDispatcher("/main.html");

rd.include(request, response);

}

Chapter 06 Servlets

Advanced Java Programming. - 39 -

}

//main.html File
<HTML>

<HEAD>

<TITLE>Banner</TITLE>

</HEAD>

<BODY>

</BODY>

</HTML>

Including another Servlet [Ref.1]

The second example shows a servlet (FirstServlet) that includes another
servlet (SecondServlet). The second servlet simply sends the included request

parameter to the user. The FirstServlet and the SecondServlet is presented
below.

//FirstServlet
import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class FirstServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>Included Request Parameters</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

out.println("Included Request Parameters
");

RequestDispatcher rd =

request.getRequestDispatcher("/servlet/SecondServlet?name=budi");

rd.include(request, response);

out.println("</BODY>");

out.println("</HTML>");

}

}

//SecondServlet
import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

Chapter 06 Servlets

Advanced Java Programming. - 40 -

public class SecondServlet extends HttpServlet

{

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

Enumeration enum = request.getAttributeNames();

while (enum.hasMoreElements()) {

String attributeName = (String) enum.nextElement();

out.println(attributeName + ": " +

request.getAttribute(attributeName) + "
");

}

}

}

Session Tracking and Management [Ref.1]

The Hypertext Transfer Protocol (HTTP) is the network protocol that web

servers and client browsers use to communicate with each other. HTTP is the

language of the web. HTTP connections are initiated by a client browser that
sends an HTTP request. The web server then responds with an HTTP response

and closes the connection. If the same client requests another resource from
the server, it must open another HTTP connection to the server. The server

always closes the connection as soon as it sends the response, whether or not
the browser user needs some other resource from the server.

This process is similar to a telephone conversation in which the receiver

always hangs up after responding to the last remark/question from the caller.
For example, a call goes something like this:

Caller dials. Caller gets connected.

Caller: "Hi, good morning."

Receiver: "Good morning."

Receiver hangs up.

Caller dials again. Caller gets connected.

Caller: "May I speak to Dr. Divakar, please?"

Receiver: "Sure."

Receiver hangs up.

Chapter 06 Servlets

Advanced Java Programming. - 41 -

Caller dials again, and so on, and so on.

Putting this in a web perspective, because the web server always

disconnects after it responds to a request, the web server does not know
whether a request comes from a user who has just requested the first page or

from a user who has requested nine other pages before. As such, HTTP is said
to be stateless.

Being stateless has huge implications. Consider, for example, a user who

is shopping at an online store. As usual, the process starts with the user
searching for a product. If the product is found, the user then enters the

quantity of that product into the shopping cart form and submits it to the
server. But, the user is not yet checking out—he still wants to buy something

else. So he searches the catalog again for the second product. The first product
order has now been lost, however, because the previous connection was closed

and the web server does not remember anything about the previous
connection.

The good news is that web programmers can work around this. The
solution is called user session management. The web server is forced to

associate HTTP requests and client browsers. There are four different ways of
session tracking:

 User Authentication

 Hidden from fields
 URL Re-writing

 Persistent cookies

User Authentication [Ref.2]

One way to perform session tracking is to leverage the information that
comes with user authentication. It occurs when a web server restricts access to

some of its resources to only those clients that log in using a recognized
username and password. After the client logs in, the username is available to a

servlet through getRemoteUser().
We can use the username to track a client session. Once a user has

logged in, the browser remembers her username and resends the name and
password as the user views new pages on the site. A servlet can identify the

user through her username and thereby track his session. For example, if the

user adds an item to his virtual shopping cart, that fact can be remembered (in
a shared class or external database, perhaps) and used later by another servlet

when the user goes to the check-out page.
For example, a servlet that utilizes user authentication might add an item

to a user's shopping cart with code like the following:

String name = req.getRemoteUser();

if (name == null) {

// Explain that the server administrator should protect this page

Chapter 06 Servlets

Advanced Java Programming. - 42 -

}

else {

String[] items = req.getParameterValues("item");

if (items != null) {

for (int i = 0; i < items.length; i++) {

addItemToCart(name, items[i]);

}

}

}

Another servlet can then retrieve the items from a user's cart with code
like this:

String name = req.getRemoteUser();

if (name == null) {

// Explain that the server administrator should protect this page

}

else {

String[] items = getItemsFromCart(name);

}

The biggest advantage of using user authentication to perform session

tracking is that it's easy to implement. Simply tell the server to protect a set of
pages, and use getRemoteUser() to identify each client. Another advantage is

that the technique works even when the user accesses our site from different

machines. It also works even if the user strays from our site or exits his
browser before coming back.

The biggest disadvantage of user authentication is that it requires each
user to register for an account and then log in each time he starts visiting our

site. Most users will tolerate registering and logging in as a necessary evil when
they are accessing sensitive information, but it's overkill for simple session

tracking. Another downside is that HTTP's basic authentication provides no
logout mechanism; the user has to exit his browser to log out. A final problem

with user authentication is that a user cannot simultaneously maintain more
than one session at the same site. We clearly need alternative approaches to

support anonymous session tracking and to support authenticated session
tracking with logout.

Hidden Form Fields [Ref.2]

One way to support anonymous session tracking is to use hidden form

fields. As the name implies, these are fields added to an HTML form that are
not displayed in the client's browser. They are sent back to the server when the

form that contains them is submitted. You include hidden form files with HTML
like this:

<FORM ACTION="/servlet/MovieFinder" METHOD="POST">

Chapter 06 Servlets

Advanced Java Programming. - 43 -

...

<INPUT TYPE=hidden NAME="zip" VALUE="94040">

<INPUT TYPE=hidden NAME="level" VALUE="expert">

...

</FORM>

In a sense, hidden form fields define constant variables for a form. To a

servlet receiving a submitted form, there is no difference between a hidden
field and a visible field.

With hidden form fields, we can rewrite our shopping cart servlets so that

users can shop anonymously until checkout time. Example given below
demonstrates the technique with a servlet that displays the user's shopping

cart contents and lets the user choose to add more items or check out.

//Session Tracking Using Hidden Form Fields
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ShoppingCart extends HttpServlet {

public void doGet(HttpServletRequest req,

HttpServletResponse res) throws

ServletException, IOException {

res.setContentType("text/html");

PrintWriter out = res.getWriter();

out.println("<HEAD><TITLE>Current Shopping Cart

Items</TITLE></HEAD><BODY>");

// Cart items are passed in as the item parameter.

String[] items = req.getParameterValues("item");

// Print the current cart items.

out.println("You currently have the following items in

your cart:
");

if (items == null)

out.println("None");

else

{

out.println("");

for (int i = 0; i < items.length; i++)

out.println("" + items[i]);

out.println("");

}

// Ask if the user wants to add more items or check out.

// Include the current items as hidden fields so they'll

// be passed on.

Chapter 06 Servlets

Advanced Java Programming. - 44 -

out.println("<FORM ACTION =

\"/examples/servlets/servlet/ShoppingCart\" METHOD = POST>");

if (items != null) {

for (int i = 0; i < items.length; i++)

out.println("<INPUT TYPE=HIDDEN NAME=\"item\" VALUE=\"" +

items[i] + "\">");

}

out.println("Would you like to
");

out.println("<INPUT TYPE=SUBMIT VALUE=\" Add More Items \">");

out.println("<INPUT TYPE=SUBMIT VALUE=\" Check Out \">");

out.println("</FORM></BODY></HTML>");

}

}

First view of the window:

After entering the URL as :

http://localhost:8080/examples/servlets/servlet/ShoppingCart?item=Java+Prog
ramming+Language&item=Linux

This servlet first reads the items that are already in the cart using

getParameterValues("item"). Presumably, the item parameter values were sent
to this servlet using hidden fields. The servlet then displays the current items to

Chapter 06 Servlets

Advanced Java Programming. - 45 -

the user and asks if he wants to add more items or check out. The servlet asks

its question with a form that includes hidden fields, so the form's target (the
ShoppingCart servlet) receives the current items as part of the submission.

As more and more information is associated with a client's session, it can
become burdensome to pass it all using hidden form fields. In these situations,

it's possible to pass on just a unique session ID that identifies a particular
client's session. That session ID can be associated with complete information

about the session that is stored on the server.

Beware that session IDs must be held as a server secret because any
client with knowledge of another client's session ID can, with a forged hidden

form field, assume the second client's identity. Consequently, session IDs

should be generated so as to be difficult to guess or forge, and active session
IDs should be protected—for example, don't make public the server's access log

because the logged URLs may contain session IDs for forms submitted with GET
requests.

Hidden form fields can be used to implement authentication with logout.
Simply present an HTML form as the logon screen, and once the user has been

authenticated by the server her identity can be associated with her particular
session ID. On logout the session ID can be deleted (by not sending the ID to

the client on later forms), or the association between ID and user can simply be
forgotten.

The advantages of hidden form fields are their ubiquity and support for
anonymity. Hidden fields are supported in all the popular browsers, they

demand no special server requirements, and they can be used with clients that
haven't registered or logged in. The major disadvantage with this technique,

however, is that the session persists only through sequences of dynamically

generated forms. The session cannot be maintained with static documents,
emailed documents, bookmarked documents, or browser shutdowns.

URL Rewriting [Ref.2]

URL rewriting is another way to support anonymous session tracking.

With URL rewriting, every local URL the user might click on is dynamically
modified, or rewritten, to include extra information. The extra information can

be in the form of extra path information, added parameters, or some custom,
server-specific URL change. Due to the limited space available in rewriting a

URL, the extra information is usually limited to a unique session ID. For
example, the following URLs have been rewritten to pass the session ID 123.

http://server:port/servlet/Rewritten original

http://server:port/servlet/Rewritten/123 extra path information

http://server:port/servlet/Rewritten?sessionid=123 added parameter

http://server:port/servlet/Rewritten;jsessionid=123 custom change

Chapter 06 Servlets

Advanced Java Programming. - 46 -

Each rewriting technique has its advantages and disadvantages. Using

extra path information works on all servers, but it doesn't work well if a servlet
has to use the extra path information as true path information. Using an added

parameter works on all servers too, but it can cause parameter naming
collisions. Using a custom, server-specific change works under all conditions for

servers that support the change. Unfortunately, it doesn't work at all for
servers that don't support the change.

Cookies [Ref.1]

The fourth technique that we can use to manage user sessions is by using
cookies. A cookie is a small piece of information that is passed back and forth in

the HTTP request and response. Even though a cookie can be created on the
client side using some scripting language such as JavaScript, it is usually

created by a server resource, such as a servlet. The cookie sent by a servlet to

the client will be passed back to the server when the client requests another
page from the same application.

Cookies were first specified by Netscape (see
http://home.netscape.com/newsref/std/cookie_spec.html) and are now part of

the Internet standard as specified in RFC 2109: The HTTP State Management
Mechanism. Cookies are transferred to and from the client in the HTTP headers.

In servlet programming, a cookie is represented by the Cookie class in
the javax.servlet.http package. We can create a cookie by calling the Cookie

class constructor and passing two String objects: the name and value of the
cookie. For instance, the following code creates a cookie object called c1. The

cookie has the name "myCookie" and a value of "secret":

Cookie c1 = new Cookie("myCookie", "secret");

We then can add the cookie to the HTTP response using the addCookie

method of the HttpServletResponse interface:

response.addCookie(c1);

Note that because cookies are carried in the request and response
headers, we must not add a cookie after an output has been written to the

HttpServletResponse object. Otherwise, an exception will be thrown.
The following example shows how we can create two cookies called

userName and password and illustrates how those cookies are transferred back
to the server. The servlet is called CookieServlet, and its code is given in

program below:

When it is first invoked, the doGet method of the servlet is called. The
method creates two cookies and adds both to the HttpServletResponse object,

as follows:

http://home.netscape.com/newsref/std/cookie_spec.html

Chapter 06 Servlets

Advanced Java Programming. - 47 -

Cookie c1 = new Cookie("userName", "Helen");

Cookie c2 = new Cookie("password", "Keppler");

response.addCookie(c1);

response.addCookie(c2);

Next, the doGet method sends an HTML form that the user can click to

send another request to the servlet:

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>Cookie Test</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

out.println("Please click the button to see

the cookies sent to you.");

out.println("
");

out.println("<FORM METHOD=POST>");

out.println("<INPUT TYPE=SUBMIT VALUE=Submit>");

out.println("</FORM>");

out.println("</BODY>");

out.println("</HTML>");

The form does not have any element other than a submit button. When

the form is submitted, the doPost method is invoked. The doPost method does
two things: It iterates all the headers in the request to show how the cookies

are conveyed back to the server, and it retrieves the cookies and displays their
values.

For displaying all the headers in the HttpServletRequest method, it first

retrieves an Enumeration object containing all the header names. The method
then iterates the Enumeration object to get the next header name and passes

the header name to the getHeader method to display the value of that header,
as you see here:

Enumeration enumr = request.getHeaderNames();

while (enumr.hasMoreElements())

{

String header = (String) enumr.nextElement();

out.print("" + header + ": ");

out.print(request.getHeader(header) + "
");

}

In order to retrieve cookies, we use the getCookies method of the

HttpServletRequest interface. This method returns a Cookie array containing all
cookies in the request. It is our responsibility to loop through the array to get

the cookie we want, as follows:

Chapter 06 Servlets

Advanced Java Programming. - 48 -

Cookie[] cookies = request.getCookies();

int length = cookies.length;

for (int i=0; i<length; i++)

{

Cookie cookie = cookies[i];

out.println("Cookie Name: " +

cookie.getName() + "
");

out.println("Cookie Value: " +

cookie.getValue() + "
");

}

//The Cookie Servlet
import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class CookieServlet extends HttpServlet {

/**Process the HTTP Get request*/

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

Cookie c1 = new Cookie("userName", "Helen");

Cookie c2 = new Cookie("password", "Keppler");

response.addCookie(c1);

response.addCookie(c2);

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>Cookie Test</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

out.println("Please click the button to see

the cookies sent to you.");

out.println("
");

out.println("<FORM METHOD=POST>");

out.println("<INPUT TYPE=SUBMIT VALUE=Submit>");

out.println("</FORM>");

out.println("</BODY>");

out.println("</HTML>");

}

/**Process the HTTP Post request*/

public void doPost(HttpServletRequest request,

HttpServletResponse response) throws

ServletException,IOException {

response.setContentType("text/html");

Chapter 06 Servlets

Advanced Java Programming. - 49 -

PrintWriter out = response.getWriter();

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>Cookie Test</TITLE>");

out.println("</HEAD>");

out.println("<BODY>");

out.println("<H2>Here are all the headers.</H2>");

Enumeration enumr = request.getHeaderNames();

while (enumr.hasMoreElements()) {

String header = (String) enumr.nextElement();

out.print("" + header + ": ");

out.print(request.getHeader(header) + "
");

}

out.println("

<H2>And, here are all the cookies.</H2>");

Cookie[] cookies = request.getCookies();

int length = cookies.length;

for (int i=0; i<length; i++)

{

Cookie cookie = cookies[i];

out.println("Cookie Name: " + cookie.getName()

+ "
");

out.println("Cookie Value: " + cookie.getValue()

+ "
");

}

out.println("</BODY>");

out.println("</HTML>");

}

}

Chapter 06 Servlets

Advanced Java Programming. - 50 -

Simple Cookie operations

Setting Cookie Attributes:

The Cookie class provides a number of methods for setting a cookie's

values and attributes. Using these methods is straightforward. The following
example sets the comment field of the Servlet's cookie. The comment field

describes the purpose of the cookie.

public void doGet (HttpServletRequest request,

Chapter 06 Servlets

Advanced Java Programming. - 51 -

HttpServletResponse response)

throws ServletException, IOException

{

...

// If the user wants to add a book, remember it

// by adding a cookie

if (values != null)

{

bookId = values[0];

Cookie getBook = new Cookie("Buy", bookId);

getBook.setComment("User wants to buy this book " +

"from the bookstore.");

}

...

}

We can also set the maximum age of the cookie. This attribute is useful,
for example, for deleting a cookie. Once again, if Duke's Bookstore kept track
of a user's order with cookies, the example would use this attribute to delete a

book from the user's order. The user removes a book from the shopping cart in
the Servlet; its code would look something like this:

public void doGet (HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

...

/* Handle any pending deletes from the shopping cart */

String bookId = request.getParameter("Remove");

...

if (bookId != null) {

// Find the cookie that pertains to the book to remove

...

// Delete the cookie by setting its maximum age to zero

thisCookie.setMaxAge(0);

...

}

// also set content type header before accessing the Writer

response.setContentType("text/html");

PrintWriter out = response.getWriter();

//Print out the response

out.println("<html> <head>" +

"<title>Your Shopping Cart</title>" + ...);

Sending the Cookie

Cookies are sent as headers of the response to the client; they are added

with the addCookie method of the HttpServletResponse class. If we are using a

Chapter 06 Servlets

Advanced Java Programming. - 52 -

Writer to return text data to the client, we must call the addCookie method

before calling the HttpServletResponse's getWriter method.
The following is code for sending the cookie:

public void doGet (HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

...

//If user wants to add a book, remember it by adding a cookie

if (values != null) {

bookId = values[0];

Cookie getBook = new Cookie("Buy", bookId);

getBook.setComment("User has indicated a desire " +

"to buy this book from the bookstore.");

response.addCookie(getBook);

}

...

}

Retrieving Cookies

Clients return cookies as fields added to HTTP request headers. To

retrieve any cookie, we must retrieve all the cookies using the getCookies
method of the HttpServletRequest class.

The getCookies method returns an array of Cookie objects, which we can
search to find the cookie or cookies that we want. (Remember that multiple

cookies can have the same name. In order to get the name of a cookie, use its
getName method.)
For example:

public void doGet (HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

...

/* Handle any pending deletes from the shopping cart */

String bookId = request.getParameter("Remove");

...

if (bookId != null) {

// Find the cookie that pertains to the book to remove

Cookie[] cookies = request.getCookies();

...

// Delete the book's cookie by setting its max age to 0

thisCookie.setMaxAge(0);

}

Chapter 06 Servlets

Advanced Java Programming. - 53 -

// also set content type header before accessing the Writer

response.setContentType("text/html");

PrintWriter out = response.getWriter();

//Print out the response

out.println("<html> <head>" +

"<title>Your Shopping Cart</title>" + ...);

Getting the Value of a Cookie

To find the value of a cookie, use its getValue method. For example:

public void doGet (HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

...

/* Handle any pending deletes from the shopping cart */

String bookId = request.getParameter("Remove");

...

if (bookId != null) {

// Find the cookie that pertains to that book

Cookie[] cookies = request.getCookies();

for(i=0; i < cookies.length; i++) {

Cookie thisCookie = cookie[i];

if (thisCookie.getName().equals("Buy") &&

thisCookie.getValue().equals(bookId)) {

// Delete cookie by setting its maximum age to zero

thisCookie.setMaxAge(0);

}

}

}

// also set content type header before accessing the Writer

response.setContentType("text/html");

PrintWriter out = response.getWriter();

//Print out the response

out.println("<html> <head>" +

"<title>Your Shopping Cart</title>" + ...);

//Example of cookie:
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class CookieExample extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

Chapter 06 Servlets

Advanced Java Programming. - 54 -

response.setContentType("text/html");

PrintWriter out = response.getWriter();

// print out cookies

Cookie[] cookies = request.getCookies();

for (int i = 0; i < cookies.length; i++) {

Cookie c = cookies[i];

String name = c.getName();

String value = c.getValue();

out.println(name + " = " + value);

}

// set a cookie

String name = request.getParameter("cookieName");

if (name != null && name.length() > 0) {

String value = request.getParameter("cookieValue");

Cookie c = new Cookie(name, value);

response.addCookie(c);

}

}

}

Cookies output windows:

Chapter 06 Servlets

Advanced Java Programming. - 55 -

Chapter 06 Servlets

Advanced Java Programming. - 56 -

Deleting
Cookies in
Chrome

For deleting the persistent cookies, use following windows of Google

Chrome and Internet Explorer respectively:

Deleting Cookies in
internet Explorer

Chapter 06 Servlets

Advanced Java Programming. - 57 -

Session Objects

Out of the four techniques for session management, the Session object,
represented by the javax.servlet.http.HttpSession interface, is the easiest to
use and the most powerful. For each user, the servlet can create an

HttpSession object that is associated with that user only and can only be
accessed by that particular user. The HttpSession object acts like a Hashtable

into which we can store any number of key/object pairs. The HttpSession object

is accessible from other servlets in the same application. To retrieve an object
previously stored, we need only to pass the key.

An HttpSession object uses a cookie or URL rewriting to send a token to
the client. If cookies are used to convey session identifiers, the client browsers

are required to accept cookies.
Unlike previous techniques, however, the server does not send any value.

What it sends is simply a unique number called the session identifier. This

session identifier is used to associate a user with a Session object in the server.
Therefore, if there are 10 simultaneous users, 10 Session objects will be

created in the server and each user can access only his/her own HttpSession
object.

The way an HttpSession object is created for a user and retrieved in the
next requests is illustrated in Figure below:

Figure above shows that there are four steps in session tracking using the

HttpSession object:

1. An HttpSession object is created by a servlet called Servlet1. A session

identifier is generated for this HttpSession object. In this example, the
session identifier is 1234, but in reality, the servlet container will

generate a longer random number that is guaranteed to be unique. The

HttpSession object then is stored in the server and is associated with the

Chapter 06 Servlets

Advanced Java Programming. - 58 -

generated session identifier. Also the programmer can store values

immediately after creating an HttpSession.

2. In the response, the servlet sends the session identifier to the client
browser.

3. When the client browser requests another resource in the same

application, such as Servlet2, the session identifier is sent back to the

server and passed to Servlet2 in the HttpServletRequest object.

4. For Servlet2 to have access to the HttpSession object for this particular

client, it uses the getSession method of the HttpServletRequest interface.
This method automatically retrieves the session identifier from the

request and obtains the HttpSession object associated with the session
identifier.

The getSession method of the HttpServletRequest interface has two
overloads. They are as follows:

HttpSession getSession()

HttpSession getSession(boolean create)

The first overload returns the current session associated with this

request, or if the request does not have a session identifier, it creates a new

one.
The second overload returns the HttpSession object associated with this

request if there is a valid session identifier in the request. If no valid session
identifier is found in the request, whether a new HttpSession object is created

depends on the create value. If the value is true, a new HttpSession object is
created if no valid session identifier is found in the request. Otherwise, the

getSession method will return null.

The HttpSession interface [Ref.1]

getAttribute

This method retrieves an attribute from the HttpSession object. The

return value is an object of type Object; therefore we may have to downcast
the attribute to its original type. To retrieve an attribute, we pass the name

associated with the attribute. This method returns an IllegalStateException if it
is called upon an invalidated HttpSession object.
The signature:

public Object getAttribute(String name)

throws IllegalStateException

Chapter 06 Servlets

Advanced Java Programming. - 59 -

getAttributeNames

The getAttributeNames method returns a java.util.Enumeration

containing all attribute names in the HttpSession object. This method returns
an IllegalStateException if it is called upon an invalidated HttpSession object.
The signature is as follows:

public java.util.Enumeration getAttributeNames()

throws IllegalStateException

getCreationTime

The getCreationTime method returns the time that the HttpSession object
was created, in milliseconds since January 1, 1970 00:00:00 GMT. This method

returns an IllegalStateException if it is called upon an invalidated HttpSession
object.
The signature is as follows:

public long getCreationTime() throws IllegalStateException

getId

The getID method returns the session identifier. The signature for this

method is as follows:

public String getId()

getLastAccessedTime

The getLastAccessedTime method returns the time the HttpSession object

was last accessed by the client. The return value is the number of milliseconds
lapsed since January 1, 1970 00:00:00 GMT. The following is the method

signature:

public long getLastAccessedTime()

getMaxInactiveInterval

The getMaxInactiveInterval method returns the number of seconds the

HttpSession object will be retained by the servlet container after it is last

accessed before being removed. The signature of this method is as follows:

public int getMaxInactiveInterval()

getServletContext

Chapter 06 Servlets

Advanced Java Programming. - 60 -

The getServletContext method returns the ServletContext object the

HttpSession object belongs to. The signature is as follows:

public javax.servlet.ServletContext getServletContext

invalidate

The invalidate method invalidates the HttpSession object and unbinds any

object bound to it. This method throws an IllegalStateException if this method

is called upon an already invalidated HttpSession object. The signature is as
follows:

public void invalidate() throws IllegalStateException

isNew

The isNew method indicates whether the HttpSession object was created
with this request and the client has not yet joined the session tracking. This

method returns an IllegalStateException if it is called upon an invalidated
HttpSession object. Its signature is as follows:

public boolean isNew() throws IllegalStateException

removeAttribute

The removeAttribute method removes an attribute bound to this
HttpSession object. This method returns an IllegalStateException if it is called

upon an invalidated HttpSession object. Its signature is as follows:

public void removeAttribute(String name)

throws IllegalStateException

setAttribute

The setAttribute method adds a name/attribute pair to the HttpSession

object. This method returns an IllegalStateException if it is called upon an

invalidated HttpSession object. The method has the following signature:

public void setAttribute(String name, Object attribute)

throws IllegalStateException

setMaxInactiveInterval

The setMaxInactiveInterval method sets the number of seconds from the

time the HttpSession object is accessed the servlet container will wait before
removing the HttpSession object. The signature is as follows:

Chapter 06 Servlets

Advanced Java Programming. - 61 -

public void setMaxInactiveInterval(int interval)

Passing a negative number to this method will make this HttpSession
object never expires.

Example:
import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SessionExample extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

HttpSession session = request.getSession(true);

// print session info

Date created = new Date(session.getCreationTime());

Date accessed = new Date(session.getLastAccessedTime());

out.println("ID " + session.getId());

out.println("Created: " + created);

out.println("Last Accessed: " + accessed);

// set session info if needed

String dataName = request.getParameter("dataName");

if (dataName != null && dataName.length() > 0) {

String dataValue = request.getParameter("dataValue");

session.setAttribute(dataName, dataValue);

}

// print session contents

Enumeration e = session.getAttributeNames();

while (e.hasMoreElements()) {

String name = (String)e.nextElement();

String value = session.getAttribute(name).toString();

out.println(name + " = " + value);

}

}

}

Chapter 06 Servlets

Advanced Java Programming. - 62 -

References

1. Java for the Web with Servlets, JSP, and EJB: A Developer's Guide
to J2EE Solutions,

First Edition by Budi Kurniawan, 2002, New Riders Publishing
Chapter 1: The Servlet Technology

Chapter 2: Inside Servlets
Chapter 3: Writing Servlet Applications

Chapter 5: Session Management
(Most of the data is referred from this book)

2. Java Servlet Programming,
Second Edition by Jason Hunter, William Crawford, 2001, O'Reilly

3. Java the Complete Reference,
Seventh Edition by Herbert Schildt, 2001 Osborne McGraw Hill

Chapter 31: Servlets
