
Chapter - 01
Overview of Software

Engineering & The Software
Development Process

Marks-20

Definition of Software

 Software is a set of instructions that when
executed, provide desired features, functions
and performance.

 It is a datastructure that enables the programs
to manipulate the information.

 Software is a document that describes the
operation and use of programs.

Characteristics

1.Software is developed or engineered; it is not
manufactured.

2.Software doesnt “wear out”.

3.Although the industry is moving towards
component based constructions, most
software continues to be custom built.

Bathtub Curve for Hardware failure

Bathtub Curve for Software failure

Types/Categories of Software

1.System Software

2.Application Software

3.Engineering/Scientific Software

4.Embedded Software

5.Product-line Software

6.Web applications

7.Artificial Intelligence Software

System Software

 It is a collection of programs written to service
other programs.

 System software area is characterized by
heavy interaction with computer hardware.

 Ex: Operating system, Compilers, Editors, File
management utilities, Drivers, Networking
Software, Telecommunication Processors.

Application Software

 It consist of standalone programs that solve
specific business needs.

 Application software is used to control
business functions in real time.

 Ex: Microsoft office suite, Google docs,
Browser

Engineering/Scientific Software

 This application range from astronomy to
volconology, automotives stress analysis to
space shuttle orbital dynamics, molecular
biology to automated manufacturing etc.

Embedded Software

 It resides within a product or system and is
used to implement and controll features and
functions for the end users and for the system
itself.

 Ex: Keypad control for microwave oven, Digital
functions, Dashboard displays etc

Product-line Software

 Desigened to provide a specific capability for
use by many different customes.

 It focus on limited marketplace or address
mass consumer markets.

 Ex: Word processing, Spread sheets,
Computer graphics, Entertainment,
Multimedia, Database management, Business
financial application.

Web applications

 Span a wide area of applications.

 In their simplest form, WebApps can be a little
more than a set of linked hypertex files that
present information using text and limited
graphics.

Artificial Intelligence Software

 AI software makes use of nonnumerical
algorithms to solve complex problems that are
not amenable to computation or straight
forward analysis.

 Ex: Robotics, Pattern recognition, Artificial
nueral networks, etc

Definition of Software Testing

“The establishment and use of sound
engineering principles in order to obtain
economically software that is reliable and
works on real machines.”

Need of Software Engineering

1.Scientific and engineering approch to develop.

2.Project has to be divided into processes.
Frame work activities, activities, task, etc.

3.Scheduling and controlling are the main
activities guided by software project.

4.Different models are required for designing
and analysis.

5.Huge management of resources.

6.Continuously deal with time and new
technology challenges.

Relationship between System
Engineering & Software Engineering

 System engineering takes place before
Software engineering. It mainly focuses on
system.

 System engineering understands role of
people, procedures, database, hardware,
software and other components.

 It analysis Modeling, validating and
management etc of operational requirements.

 Software engineering is derived from System
engineering.

 It mainly focuses on software product
engineering and development process.

 It is a part of System engineering.

 System engineering is overall study of a
system where software is going to be placed.

Software Engineering – A Layered
Technology Approach

 Any engineering approach must rest on an
organizational commitment to quality.

 Total Quality Management, Six Sigma and
similar philosophies foster a continuous
process improvement culture.

 This culture in turn develop increasingly more
effective approaches to software engineering.

 The bedrock that supports SE is a quality
focus.

 The foundation for SE is process layer.

 SE process is glue that holds technology layer
together.

 Process defines a framework that must be
established for effective delivery of SE
technology.

 SE methods provide the technical “how to's”
for building software.

 Methods include communication, requirements
analysis, design modeling, program
construction, testing and support.

 SE tools provide automated or semiautomated
support for the process and methods.

 When tools are integrated so that information
created by one tool is used by other tool.

 It leads to computer aided software
engineering.

Software Process

 A software process as a framework for the
tasks that are required to build high quality
software.

 A software process defines the approach that
is taken as software is engineered. But SE
also encompasses technologies.

Process framework

 A process framework establishes the
foundation for a complete software process by
identifying a small number of framework
activities that are applicable to all software
projects.

 SE actions: a collection of related tasks that
produces a major SE work product.

 Each action is populated with individual work
tasks that accomplish some part of work
implied by action.

Generic process framework
activities

1.Communication

2.Planning

3.Modeling

4.Construction

5.Deployment

The framework described in the generic view of
SE is complimented by number of Umbrella
activities.

Umbrella Activities

1.Software project tracking and control.

2.Risk management.

3.Software quality assurance .

4.Formal Technical reviews.

5.Measurement.

6.Software configuration management.

7.Re usability management.

8.Work product preparation and production.

1.Software project tracking and control: assess
progress against the plan and take actions to
maintain the schedule.

2.Risk management: assesses risks that may
affect the outcome of project or quality of
product.

3.Software quality assurance: defines and
conduct activities required to ensure s/w
quality.

4.Formal Technical reviews: assesses SE work
products to uncover and remove errors before
going to the next activity.

5. Measurement: define and collects process, project,

and product measures in delivering s/w that meets

customers need.

6. Software configuration management: manage the

effects of change throughout the software process.

7. Re usability management: defines criteria for work

product reuse and establishes mechanism to achieve

reusable components.

8. Work product preparation and production: create

work products such as models, documents, logs,

forms and lists.

Personal and Team process Models

Personal Software process:-

The PSP model defines five framework activities
:-

1.Planning

2.High level Design

3.High level Design Review

4.Development

5.Postmortem

Team Software Process

 Build self directed teams that plan and track
their work,establish goals,own their processes
and plans.

 Show managers how to coach and motivate
their teams and how to help them.

 Accelerate software process improvement.

 Provide improvement guidance to high maturity
organisations.

 Facilitate university teaching of industrial grade
team skills.

 A self directed team has a consistent
understanding of its overall goals and objectives.

 It defines role and responsibilities for each
member, track project data.

 Continually assesses risk and reacts to it and
manage project status.

Prescriptive process model

There are called “prescriptive” because they prescribe

 a set of process framework activities

 software engineering actions,

 tasks,

 work products,

 quality assurance and

 change control mechanism for each project.

The Waterfall model

 The Waterfall Model was first Process Model to be introduced.

 It is also referred to as a linear-sequential life cycle model.

 It is very simple to understand and use.

 In a waterfall model, each phase must be completed fully before
the next phase can begin.

 This type of model is basically used for the for the project

which is small and there are no uncertain requirements.

 At the end of each phase, a review takes place to determine if the
project is on the right path and whether or not to continue or
discard the project.

 In this model the testing starts only after the development is
complete. In waterfall model phases do not overlap.

Communication

In communication the major task is requirements gathering

which helps to find out the exact need of customer.

Planning

It includes some major activities such as planning for schedule,

tasks, tracks on the process and the estimation related to the project

Modelling

Modelling is used to analyse the data and as per the analysis the

data and process will be designed.

Construction

Construction is based on the design of the project. According the

design of the project coding and testing is done.

Deployment

The product is actually delivered that is installed at customer's site.

As well as feedback is taken from the customer to ensure the

quality of product.

• Requirements of the complete system are clearly

defined and understood.

• Major requirements must be defined.

• There is a need to get a product to the market

early.

• A new technology is being used.

• Resources with needed skill set are not available

• There are some high risk features and goals.

When to Use

Advantages of waterfall model:

1.This model is simple and easy to understand and use.

2.It is easy to manage due to the rigidity of the model –

each phase has specific deliverables and a review

process.

3.In this model phases are processed and completed one

at a time. Phases do not overlap.

4.Waterfall model works well for smaller projects where

requirements are very well understood.

Disadvantages of waterfall model:

1.Once an application is in the testing stage, it is very

difficult to go back and change something that was not

well-thought out in the concept stage.

2.No working software is produced until late during the

life cycle.

3.High amounts of risk and uncertainty.

4.Major design problems may not be detected early.

5.The model implies that once the product is finished,

everything else is maintenance.

Incremental process Model

Incremental Process Model

C- Communication

P - Planning

M – Modelling

C - Construction

D - Deployment

Delivers software in small but usable pieces, each piece builds

on pieces already delivered

 This combines elements of waterfall model applied in parallel
process flows.

 Each linear sequence produce deliverable “increments” of
the s/w product.

 It produce a s/w product as a series of increment release.

 When an incremental model is used the first increment is
often a core product i.e. basic requirement

 The core product is used by customer. As a result of use ,a
plan is developed for the next increment.

 This process is repeated following the delivery of each
increment, until the complete product is produced.

Incremental process Model

For example : Word processing s/w is developed using
incremental paradigm then,

1) In 1st:Basic file management editing & document
production functions are delivered

2) In 2nd : More sophisticated editing & document
production capabilities are delivered

3) In 3rd : Spelling & grammar checking functions are
delivered

4) In last : Advanced web page layout capabilities
functions are delivered.

• Customers get usable functionality earlier than with

waterfall.

• Early feedback improves likelihood of producing a product

that satisfies customers.

• The quality of the final product is better

• The core functionality is developed early and tested

multiple times (during each release)

• Only a relatively small amount of functionality added

in each release: easier to get it right and test it

thoroughly

• Detect design problems early and get a chance to

redesign

Advantages

• Needs good planning and design.

• Needs a clear and complete definition of the

whole system before it can be broken down and

built incrementally.

• Total cost is higher than waterfall.

Disadvantages

Rapid Application Development Model(RAD)

• RAD is an incremental software process model

that emphasizes a short development cycle.

• Using Component based construction

approach.

Rapid Application Development Model(RAD)

The RAD approach activities :

1. Communication: Works to understand the business
problems

2. Planning : Is essential because multiple s/w teams
work in parallel on different system function.

3. Modelling : 3 Major phases -Business modelling,
Data modelling & process modelling.

4. Construction :Emphasizes on the use of pre-existing
s/w components & application.

5. Deployment : Changes & innovations are done if

required for customer satisfaction.

Advantages

1.Useful when the time limit for development is too short.

2.Since reusability is used ,many of the program
components are already tested. This reduce overall testing
time.

3.All functions are modularized so it is easy to work with

• For large projects RAD require highly skilled engineers

in the team.

• Both end customer and developer should be committed to

complete the system in time, if commitment is lacking

RAD will fail.

• RAD is based on Object Oriented approach and if it is

difficult to modularize the project the RAD may not work

well.

Disadvantages

Evolutionary Models: Prototyping

Communicat ion

Qu ick p lan

Const ruct ion

of

prot ot ype

Mo d e lin g

 Qu ick de sig n

De live ry

& Fe e dback

Deployment

communication

Quick
plan

Modeling
Quick design

Construction
of prototype

Deployment
delivery &
feedback

• Business and product requirement often change as

development proceed.

• Software engineer need a process model that has been

explicitly designed to accommodate a product that

evolves over time.

• Evolutionary models are iterative.

• Enables software engineers to develop increasingly

more complete version of the software.

Evolutionary Models: Prototyping

There are two types of evolutionary development:

– Exploratory development
• Start with requirements that are well defined

• Add new features when customers propose new requirements

– Throw-away prototyping
• Objective is to understand customer’s requirements (i.e. they

often don’t know what they want), hence poor requirements to

start

• Use means such as prototyping to focus on poorly

understood requirements, redefine requirements as you

progress

Steps in Prototyping

• Begins with requirement Gathering
• Identify whatever requirements are known.
• Outline areas where further definition is mandatory.
• A quick design occurs.
• Quick design leads to the construction of prototype.
• Prototype is evaluated by the customer.
• Requirements are refined
• Prototype is turned to satisfy the needs of customer

Advantages

1.The risk factor is very low

2.With less investment of finance & time, the
requirements are confirmed

Disadvantages

1. Leads to implementing and then repairing
way of building systems.

2. Practically, this methodology may increase
the complexity of the system.

3. Incomplete application may cause
application not to be used as the full
system.

When to use Prototype model:
 This model should be used when the desired system

needs to have a lot of interaction with the end users.

 Typically, online systems, web interfaces have a very high
amount of interaction with end users, are best suited for
Prototype model.

 Prototyping ensures that the end users constantly work
with the system and provide a feedback which is
incorporated in the prototype to result in a usable
system.

 They are excellent for designing good human computer
interface systems.

Spiral Model

 Spiral model is a combination of iterative
development process model and sequential
linear development model i.e. waterfall model

 It allows for incremental releases of the product, or
incremental refinement through each iteration
around the spiral.

Advantages of Spiral model:
High amount of risk analysis hence, avoidance of
Risk is enhanced.

1) Good for large and mission-critical projects.

2) Strong approval and documentation control.

3) Additional Functionality can be added at a later
date.

4) Software is produced early in the software life
cycle.

Disadvantages of Spiral model:

1.Can be a costly model to use.

2. Project’s success is highly dependent on the
risk analysis phase.

3. Doesn’t work well for smaller projects.

When to use Spiral model:

 When costs and risk evaluation is important

 For medium to high-risk projects

 Users are unsure of their needs

 Requirements are complex

 Significant changes are expected (research
and exploration)

Agile Software Development
 It focuses on the rapid development of the s/w product

by considering the current market requirements and time
limits.

 Todays market is rapidly changing and unpredictable.

 Agile solves the problem of long time and heavy
documentation s/w development process.

 Agile focuses on face to face or interactive processes
than documentation.

 It doesn't believe in more and more documentation
because it makes difficult to find the required
information.

 It supports team to work together with
management for supporting technical decision
making.

 This method focuses mainly on coding because it
is directly deliverable to the users.

 Agile saves man power, cost, documentation and
time.

Features of the Agile Software Development
Approach

Modularity: Modularity allows a process to be broken into components called
activities. A set of activities capable of transforming the vision of the software
system into reality.

Iterative: Agile software processes acknowledge that we get things wrong
before we get them right. Therefore, they focus on short cycles. Within each
cycle, a certain set of activities is completed.

Time-Bound: Iterations become the perfect unit for planning the software
development project. We can set time limits on each iteration and schedule
them accordingly.

Parsimony: Agile software processes focus on parsimony. That is, they require a
minimal number of activities necessary to mitigate risks and achieve their
goals.

Adaptive: During an iteration, new risks may be exposed which require
some activities that were not planned. The agile process adapts the
process to attack these new found risks.

Incremental: An agile process does not try to build the entire system at
once. Instead, it partitions the nontrivial system into increments which
may be developed in parallel, at different times, and at different rates.

Convergent: Convergence states that we are actively attacking all of the
risks worth attacking. As a result, the system becomes closer to the
reality that we seek with each iteration.

People-Oriented: Agile processes favor people over process and
technology. Developers that are empowered raise their productivity,
quality, and performance.

Collaborative: Communication is a vital part of any software development
project. When a project is developed in pieces, understanding how the
pieces fit together is vital to creating the finished product.

Difference between Prescriptive Process Model and
Agile Process Model

Extreme programming

 The best-known and most widely used agile method.

Extreme Programming (XP) takes an ‘extreme’ approach

to iterative development.

New versions may be built several times per day;

Increments are delivered to customers every 2 weeks;

All tests must be run for every build and the build is only

accepted if tests run successfully.

 XP is a disciplined approach to software development
based on value of simplicity, communication and
feedback.

 It empowers developers to confidently response to the
changing needs of customers even late in life cycle.

